Sort by:
Page 360 of 6646636 results

Yutao Jin, Haowen Xiao, Jielei Chu, Fengmao Lv, Yuxiao Li, Tianrui Li

arxiv logopreprintJul 18 2025
Mild Cognitive Impairment (MCI) serves as a prodromal stage of Alzheimer's Disease (AD), where early identification and intervention can effectively slow the progression to dementia. However, diagnosing AD remains a significant challenge in neurology due to the confounders caused mainly by the selection bias of multimodal data and the complex relationships between variables. To address these issues, we propose a novel visual-language causal intervention framework named Alzheimer's Disease Prediction with Cross-modal Causal Intervention (ADPC) for diagnostic assistance. Our ADPC employs large language model (LLM) to summarize clinical data under strict templates, maintaining structured text outputs even with incomplete or unevenly distributed datasets. The ADPC model utilizes Magnetic Resonance Imaging (MRI), functional MRI (fMRI) images and textual data generated by LLM to classify participants into Cognitively Normal (CN), MCI, and AD categories. Because of the presence of confounders, such as neuroimaging artifacts and age-related biomarkers, non-causal models are likely to capture spurious input-output correlations, generating less reliable results. Our framework implicitly eliminates confounders through causal intervention. Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases, achieving state-of-the-art (SOTA) metrics across most evaluation metrics. The study showcases the potential of integrating causal reasoning with multi-modal learning for neurological disease diagnosis.

Lei Xu, Torkel B Brismar

arxiv logopreprintJul 18 2025
We have developed a novel CT image analysis package named AnatomyArchive, built on top of the recent full body segmentation model TotalSegmentator. It provides automatic target volume selection and deselection capabilities according to user-configured anatomies for volumetric upper- and lower-bounds. It has a knowledge graph-based and time efficient tool for anatomy segmentation mask management and medical image database maintenance. AnatomyArchive enables automatic body volume cropping, as well as automatic arm-detection and exclusion, for more precise body composition analysis in both 2D and 3D formats. It provides robust voxel-based radiomic feature extraction, feature visualization, and an integrated toolchain for statistical tests and analysis. A python-based GPU-accelerated nearly photo-realistic segmentation-integrated composite cinematic rendering is also included. We present here its software architecture design, illustrate its workflow and working principle of algorithms as well provide a few examples on how the software can be used to assist development of modern machine learning models. Open-source codes will be released at https://github.com/lxu-medai/AnatomyArchive for only research and educational purposes.

Maximilian Rokuss, Benjamin Hamm, Yannick Kirchhoff, Klaus Maier-Hein

arxiv logopreprintJul 18 2025
We introduce the first publicly available breast MRI dataset with explicit left and right breast segmentation labels, encompassing more than 13,000 annotated cases. Alongside this dataset, we provide a robust deep-learning model trained for left-right breast segmentation. This work addresses a critical gap in breast MRI analysis and offers a valuable resource for the development of advanced tools in women's health. The dataset and trained model are publicly available at: www.github.com/MIC-DKFZ/BreastDivider

Kyriakos Flouris, Moritz Halter, Yolanne Y. R. Lee, Samuel Castonguay, Luuk Jacobs, Pietro Dirix, Jonathan Nestmann, Sebastian Kozerke, Ender Konukoglu

arxiv logopreprintJul 18 2025
Hemodynamic analysis is essential for predicting aneurysm rupture and guiding treatment. While magnetic resonance flow imaging enables time-resolved volumetric blood velocity measurements, its low spatiotemporal resolution and signal-to-noise ratio limit its diagnostic utility. To address this, we propose the Localized Fourier Neural Operator (LoFNO), a novel 3D architecture that enhances both spatial and temporal resolution with the ability to predict wall shear stress (WSS) directly from clinical imaging data. LoFNO integrates Laplacian eigenvectors as geometric priors for improved structural awareness on irregular, unseen geometries and employs an Enhanced Deep Super-Resolution Network (EDSR) layer for robust upsampling. By combining geometric priors with neural operator frameworks, LoFNO de-noises and spatiotemporally upsamples flow data, achieving superior velocity and WSS predictions compared to interpolation and alternative deep learning methods, enabling more precise cerebrovascular diagnostics.

Malo Gicquel, Ruoyi Zhao, Anika Wuestefeld, Nicola Spotorno, Olof Strandberg, Kalle Åström, Yu Xiao, Laura EM Wisse, Danielle van Westen, Rik Ossenkoppele, Niklas Mattsson-Carlgren, David Berron, Oskar Hansson, Gabrielle Flood, Jacob Vogel

arxiv logopreprintJul 18 2025
Ultra-high resolution 7 tesla (7T) magnetic resonance imaging (MRI) provides detailed anatomical views, offering better signal-to-noise ratio, resolution and tissue contrast than 3T MRI, though at the cost of accessibility. We present an advanced deep learning model for synthesizing 7T brain MRI from 3T brain MRI. Paired 7T and 3T T1-weighted images were acquired from 172 participants (124 cognitively unimpaired, 48 impaired) from the Swedish BioFINDER-2 study. To synthesize 7T MRI from 3T images, we trained two models: a specialized U-Net, and a U-Net integrated with a generative adversarial network (GAN U-Net). Our models outperformed two additional state-of-the-art 3T-to-7T models in image-based evaluation metrics. Four blinded MRI professionals judged our synthetic 7T images as comparable in detail to real 7T images, and superior in subjective visual quality to 7T images, apparently due to the reduction of artifacts. Importantly, automated segmentations of the amygdalae of synthetic GAN U-Net 7T images were more similar to manually segmented amygdalae (n=20), than automated segmentations from the 3T images that were used to synthesize the 7T images. Finally, synthetic 7T images showed similar performance to real 3T images in downstream prediction of cognitive status using MRI derivatives (n=3,168). In all, we show that synthetic T1-weighted brain images approaching 7T quality can be generated from 3T images, which may improve image quality and segmentation, without compromising performance in downstream tasks. Future directions, possible clinical use cases, and limitations are discussed.

Haugg F, Lee G, He J, Johnson J, Zapaishchykova A, Bitterman DS, Kann BH, Aerts HJWL, Mak RH

pubmed logopapersJul 18 2025
Chronological age, although commonly used in clinical practice, fails to capture individual variations in rates of ageing and physiological decline. Recent advances in artificial intelligence (AI) have transformed the estimation of biological age using various imaging techniques. This Review consolidates AI developments in age prediction across brain, chest, abdominal, bone, and facial imaging using diverse methods, including MRI, CT, x-ray, and photographs. The difference between predicted and chronological age-often referred to as age deviation-is a promising biomarker for assessing health status and predicting disease risk. In this Review, we highlight consistent associations between age deviation and various health outcomes, including mortality risk, cognitive decline, and cardiovascular prognosis. We also discuss the technical challenges in developing unbiased models and ethical considerations for clinical application. This Review highlights the potential of AI-based age estimation in personalised medicine as it offers a non-invasive, interpretable biomarker that could transform health risk assessment and guide preventive interventions.

Taseh, A., Shah, A., Eftekhari, M., Flaherty, A., Ebrahimi, A., Jones, S., Nukala, V., Nazarian, A., Waryasz, G., Ashkani-Esfahani, S.

medrxiv logopreprintJul 18 2025
BackgroundFifth metatarsal (5MT) fractures are common but challenging to diagnose, particularly with limited expertise or subtle fractures. Deep learning shows promise but faces limitations due to image quality requirements. This study develops a deep learning model to detect 5MT fractures from smartphone-captured radiograph images, enhancing accessibility of diagnostic tools. MethodsA retrospective study included patients aged >18 with 5MT fractures (n=1240) and controls (n=1224). Radiographs (AP, oblique, lateral) from Electronic Health Records (EHR) were obtained and photographed using a smartphone, creating a new dataset (SP). Models using ResNet 152V2 were trained on EHR, SP, and combined datasets, then evaluated on a separate smartphone test dataset (SP-test). ResultsOn validation, the SP model achieved optimal performance (AUROC: 0.99). On the SP-test dataset, the EHR models performance decreased (AUROC: 0.83), whereas SP and combined models maintained high performance (AUROC: 0.99). ConclusionsSmartphone-specific deep learning models effectively detect 5MT fractures, suggesting their practical utility in resource-limited settings.

Sexton-Oates, A., Mathian, E., Candeli, N., Lim, Y., Voegele, C., Di Genova, A., Mange, L., Li, Z., van Weert, T., Hillen, L. M., Blazquez-Encinas, R., Gonzalez-Perez, A., Morrison, M. L., Lauricella, E., Mangiante, L., Bonheme, L., Moonen, L., Absenger, G., Altmuller, J., Degletagne, C., Brustugun, O. T., Cahais, V., Centonze, G., Chabrier, A., Cuenin, C., Damiola, F., de Montpreville, V. T., Deleuze, J.-F., Dingemans, A.-M. C., Fadel, E., Gadot, N., Ghantous, A., Graziano, P., Hofman, P., Hofman, V., Ibanez-Costa, A., Lacomme, S., Lopez-Bigas, N., Lund-Iversen, M., Milione, M., Muscarella, L

medrxiv logopreprintJul 18 2025
Lung neuroendocrine tumours (NETs, also known as carcinoids) are rapidly rising in incidence worldwide but have unknown aetiology and limited therapeutic options beyond surgery. We conducted multi-omic analyses on over 300 lung NETs including whole-genome sequencing (WGS), transcriptome profiling, methylation arrays, spatial RNA sequencing, and spatial proteomics. The integration of multi-omic data provides definitive proof of the existence of four strikingly different molecular groups that vary in patient characteristics, genomic and transcriptomic profiles, microenvironment, and morphology, as much as distinct diseases. Among these, we identify a new molecular group, enriched for highly aggressive supra-carcinoids, that displays an immune-rich microenvironment linked to tumour--macrophage crosstalk, and we uncover an undifferentiated cell population within supra-carcinoids, explaining their molecular and behavioural link to high-grade lung neuroendocrine carcinomas. Deep learning models accurately identified the Ca A1, Ca A2, and Ca B groups based on morphology alone, outperforming current histological criteria. The characteristic tumour microenvironment of supra-carcinoids and the validation of a panel of immunohistochemistry markers for the other three molecular groups demonstrates that these groups can be accurately identified based solely on morphological features, facilitating their implementation in the clinical setting. Our proposed morpho-molecular classification highlights group-specific therapeutic opportunities, including DLL3, FGFR, TERT, and BRAF inhibitors. Overall, our findings unify previously proposed molecular classifications and refine the lung cancer map by revealing novel tumour types and potential treatments, with significant implications for prognosis and treatment decision-making.

Beeche C, Zhao B, Tavolinejad H, Pourmussa B, Kim J, Duda J, Gee J, Witschey WR, Chirinos JA

pubmed logopapersJul 17 2025
Vascular aging is an important phenotype characterized by structural and geometric remodeling. Some individuals exhibit supernormal vascular aging, associated with improved cardiovascular outcomes; others experience early vascular aging, linked to adverse cardiovascular outcomes. The aorta is the artery that exhibits the most prominent age-related changes; however, the biological mechanisms underlying aortic aging, its genetic architecture, and its relationship with cardiovascular structure, function, and disease states remain poorly understood. We developed sex-specific models to quantify aortic age on the basis of aortic geometric phenotypes derived from 3-dimensional tomographic imaging data in 2 large biobanks: the UK Biobank and the Penn Medicine BioBank. Convolutional neural ne2rk-assisted 3-dimensional segmentation of the aorta was performed in 56 104 magnetic resonance imaging scans in the UK Biobank and 6757 computed tomography scans in the Penn Medicine BioBank. Aortic vascular age index (AVAI) was calculated as the difference between the vascular age predicted from geometric phenotypes and the chronological age, expressed as a percent of chronological age. We assessed associations with cardiovascular structure and function using multivariate linear regression and examined the genetic architecture of AVAI through genome-wide association studies, followed by Mendelian randomization to assess causal associations. We also constructed a polygenic risk score for AVAI. AVAI displayed numerous associations with cardiac structure and function, including increased left ventricular mass (standardized β=0.144 [95% CI, 0.138, 0.149]; <i>P</i><0.0001), wall thickness (standardized β=0.061 [95% CI, 0.054, 0.068]; <i>P</i><0.0001), and left atrial volume maximum (standardized β=0.060 [95% CI, 0.050, 0.069]; <i>P</i><0.0001). AVAI exhibited high genetic heritability (<i>h</i><sup>2</sup>=40.24%). We identified 54 independent genetic loci (<i>P</i><5×10<sup>-</sup><sup>8</sup>) associated with AVAI, which further exhibited gene-level associations with the fibrillin-1 (<i>FBN1</i>) and elastin (<i>ELN1</i>) genes. Mendelian randomization supported causal associations between AVAI and atrial fibrillation, vascular dementia, aortic aneurysm, and aortic dissection. A polygenic risk score for AVAI was associated with an increased prevalence of atrial fibrillation, hypertension, aortic aneurysm, and aortic dissection. Early aortic aging is significantly associated with adverse cardiac remodeling and important cardiovascular disease states. AVAI exhibits a polygenic, highly heritable genetic architecture. Mendelian randomization analyses support a causal association between AVAI and cardiovascular diseases, including atrial fibrillation, vascular dementia, aortic aneurysms, and aortic dissection.

Popescu AB, Rehwald W, Wendell D, Chevalier C, Itu LM, Suciu C, Chitiboi T

pubmed logopapersJul 17 2025
Propose and evaluate an automatic approach for predicting the optimal inversion time (TI) for dark and gray blood images for flow-independent dark-blood delayed-enhancement (FIDDLE) acquisition based on free-breathing FIDDLE TI-scout images. In 267 patients, the TI-scout sequence acquired single-shot magnetization-prepared and associated reference images (without preparation) on a 3 T Magnetom Vida and a 1.5 T Magnetom Sola scanner. Data were reconstructed into phase-corrected TI-scout images typically covering TIs from 140 to 440 ms (20 ms increment). A deep learning network was trained to segment the myocardium and blood pool in reference images. These segmentation masks were transferred to the TI-scout images to derive intensity features of myocardium and blood, with which T<sub>1</sub>-recovery curves were determined by logarithmic fitting. The optimal TI for dark and gray blood images were derived as linear functions of the TI in which both T<sub>1</sub>-curves cross. This TI-prediction pipeline was evaluated in 64 clinical subjects. The pipeline predicted optimal TIs with an average error less than 10 ms compared to manually annotated optimal TIs. The presented approach reliably and automatically predicted optimal TI for dark and gray blood FIDDLE acquisition, with an average error less than the TI increment of the FIDDLE TI-scout sequence.
Page 360 of 6646636 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.