Sort by:
Page 1 of 1099 results
Next

Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.

Muhtadi S, Gallippi CM

pubmed logopapersNov 1 2025
We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches. An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks. The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level. Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.

Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.

Dong V, Mankowski W, Silva Filho TM, McCarthy AM, Kontos D, Maidment ADA, Barufaldi B

pubmed logopapersNov 1 2025
Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability. We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>I</mi></mrow> </msub> <mo>=</mo> <mn>651</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>II</mi></mrow> </msub> <mo>=</mo> <mn>100</mn></mrow> </math> ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes. LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.909</mn> <mo>±</mo> <mn>0.032</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.858</mn> <mo>±</mo> <mn>0.027</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.927</mn> <mo>±</mo> <mn>0.013</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.890</mn> <mo>±</mo> <mn>0.089</mn></mrow> </math> ] and an AUC of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.936</mn> <mo>±</mo> <mn>0.016</mn></mrow> </math> for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : 0.880, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : 0.779, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : 0.878, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades. Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.

OneTouch Automated Photoacoustic and Ultrasound Imaging of Breast in Standing Pose.

Zhang H, Zheng E, Zheng W, Huang C, Xi Y, Cheng Y, Yu S, Chakraborty S, Bonaccio E, Takabe K, Fan XC, Xu W, Xia J

pubmed logopapersJun 12 2025
We developed an automated photoacoustic and ultrasound breast tomography system that images the patient in the standing pose. The system, named OneTouch-PAT, utilized linear transducer arrays with optical-acoustic combiners for effective dual-modal imaging. During scanning, subjects only need to gently attach their breasts to the imaging window, and co-registered three-dimensional ultrasonic and photoacoustic images of the breast can be obtained within one minute. Our system has a large field of view of 17 cm by 15 cm and achieves an imaging depth of 3 cm with sub-millimeter resolution. A three-dimensional deep-learning network was also developed to further improve the image quality by improving the 3D resolution, enhancing vasculature, eliminating skin signals, and reducing noise. The performance of the system was tested on four healthy subjects and 61 patients with breast cancer. Our results indicate that the ultrasound structural information can be combined with the photoacoustic vascular information for better tissue characterization. Representative cases from different molecular subtypes have indicated different photoacoustic and ultrasound features that could potentially be used for imaging-based cancer classification. Statistical analysis among all patients indicates that the regional photoacoustic intensity and vessel branching points are indicators of breast malignancy. These promising results suggest that our system could significantly enhance breast cancer diagnosis and classification.

Multimodal deep learning for enhanced breast cancer diagnosis on sonography.

Wei TR, Chang A, Kang Y, Patel M, Fang Y, Yan Y

pubmed logopapersJun 12 2025
This study introduces a novel multimodal deep learning model tailored for the differentiation of benign and malignant breast masses using dual-view breast ultrasound images (radial and anti-radial views) in conjunction with corresponding radiology reports. The proposed multimodal model architecture includes specialized image and text encoders for independent feature extraction, along with a transformation layer to align the multimodal features for the subsequent classification task. The model achieved an area of the curve of 85% and outperformed unimodal models with 6% and 8% in Youden index. Additionally, our multimodal model surpassed zero-shot predictions generated by prominent foundation models such as CLIP and MedCLIP. In direct comparison with classification results based on physician-assessed ratings, our model exhibited clear superiority, highlighting its practical significance in diagnostics. By integrating both image and text modalities, this study exemplifies the potential of multimodal deep learning in enhancing diagnostic performance, laying the foundation for developing robust and transparent AI-assisted solutions.

A machine learning approach for personalized breast radiation dosimetry in CT: Integrating radiomics and deep neural networks.

Tzanis E, Stratakis J, Damilakis J

pubmed logopapersJun 11 2025
To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT. Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction. The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %-4.12 %) for the right breast and 4.82 % (range: 4.56 %-5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07). This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.

Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

Zhang J, Wu Q, Lei P, Zhu X, Li B

pubmed logopapersJun 11 2025
This meta-analysis evaluates the diagnostic accuracy of machine learning (ML)-based magnetic resonance imaging (MRI) models in distinguishing benign from malignant breast lesions and explores factors influencing their performance. A systematic search of PubMed, Embase, Cochrane Library, Scopus, and Web of Science identified 12 eligible studies (from 3,739 records) up to August 2024. Data were extracted to calculate sensitivity, specificity, and area under the curve (AUC) using bivariate models in R 4.4.1. Study quality was assessed via QUADAS-2. Pooled sensitivity and specificity were 0.86 (95% CI: 0.82-0.90) and 0.82 (95% CI: 0.78-0.86), respectively, with an overall AUC of 0.90 (95% CI: 0.85-0.90). Diagnostic odds ratio (DOR) was 39.11 (95% CI: 25.04-53.17). Support vector machine (SVM) classifiers outperformed Naive Bayes, with higher sensitivity (0.88 vs. 0.86) and specificity (0.82 vs. 0.78). Heterogeneity was primarily attributed to MRI equipment (P = 0.037). ML-based MRI models demonstrate high diagnostic accuracy for breast cancer classification, with pooled sensitivity of 0.86 (95% CI: 0.82-0.90), specificity of 0.82 (95% CI: 0.78-0.86), and AUC of 0.90 (95% CI: 0.85-0.90). These results support their clinical utility as screening and diagnostic adjuncts, while highlighting the need for standardized protocols to improve generalizability.

Using a Large Language Model for Breast Imaging Reporting and Data System Classification and Malignancy Prediction to Enhance Breast Ultrasound Diagnosis: Retrospective Study.

Miaojiao S, Xia L, Xian Tao Z, Zhi Liang H, Sheng C, Songsong W

pubmed logopapersJun 11 2025
Breast ultrasound is essential for evaluating breast nodules, with Breast Imaging Reporting and Data System (BI-RADS) providing standardized classification. However, interobserver variability among radiologists can affect diagnostic accuracy. Large language models (LLMs) like ChatGPT-4 have shown potential in medical imaging interpretation. This study explores its feasibility in improving BI-RADS classification consistency and malignancy prediction compared to radiologists. This study aims to evaluate the feasibility of using LLMs, particularly ChatGPT-4, to assess the consistency and diagnostic accuracy of standardized breast ultrasound imaging reports, using pathology as the reference standard. This retrospective study analyzed breast nodule ultrasound data from 671 female patients (mean 45.82, SD 9.20 years; range 26-75 years) who underwent biopsy or surgical excision at our hospital between June 2019 and June 2024. ChatGPT-4 was used to interpret BI-RADS classifications and predict benign versus malignant nodules. The study compared the model's performance to that of two senior radiologists (≥15 years of experience) and two junior radiologists (<5 years of experience) using key diagnostic metrics, including accuracy, sensitivity, specificity, area under the receiver operating characteristic curve, P values, and odds ratios with 95% CIs. Two diagnostic models were evaluated: (1) image interpretation model, where ChatGPT-4 classified nodules based on BI-RADS features, and (2) image-to-text-LLM model, where radiologists provided textual descriptions, and ChatGPT-4 determined malignancy probability based on keywords. Radiologists were blinded to pathological outcomes, and BI-RADS classifications were finalized through consensus. ChatGPT-4 achieved an overall BI-RADS classification accuracy of 96.87%, outperforming junior radiologists (617/671, 91.95% and 604/671, 90.01%, P<.01). For malignancy prediction, ChatGPT-4 achieved an area under the receiver operating characteristic curve of 0.82 (95% CI 0.79-0.85), an accuracy of 80.63% (541/671 cases), a sensitivity of 90.56% (259/286 cases), and a specificity of 73.51% (283/385 cases). The image interpretation model demonstrated performance comparable to senior radiologists, while the image-to-text-LLM model further improved diagnostic accuracy for all radiologists, increasing their sensitivity and specificity significantly (P<.001). Statistical analyses, including the McNemar test and DeLong test, confirmed that ChatGPT-4 outperformed junior radiologists (P<.01) and showed noninferiority compared to senior radiologists (P>.05). Pathological diagnoses served as the reference standard, ensuring robust evaluation reliability. Integrating ChatGPT-4 into an image-to-text-LLM workflow improves BI-RADS classification accuracy and supports radiologists in breast ultrasound diagnostics. These results demonstrate its potential as a decision-support tool to enhance diagnostic consistency and reduce variability.

Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors.

Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F

pubmed logopapersJun 10 2025
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8<sup>+</sup> T cells and M2-type macrophages were strong predictors of treatment response.

MAMBO: High-Resolution Generative Approach for Mammography Images

Milica Škipina, Nikola Jovišić, Nicola Dall'Asen, Vanja Švenda, Anil Osman Tur, Slobodan Ilić, Elisa Ricci, Dubravko Ćulibrk

arxiv logopreprintJun 10 2025
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.

Uncertainty estimation for trust attribution to speed-of-sound reconstruction with variational networks.

Laguna S, Zhang L, Bezek CD, Farkas M, Schweizer D, Kubik-Huch RA, Goksel O

pubmed logopapersJun 10 2025
Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with variational networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty-based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS 4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty-based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
Page 1 of 1099 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.