Sort by:
Page 1 of 11107 results
Next

Artificial intelligence in medical imaging diagnosis: are we ready for its clinical implementation?

Ramos-Soto O, Aranguren I, Carrillo M M, Oliva D, Balderas-Mata SE

pubmed logopapersNov 1 2025
We examine the transformative potential of artificial intelligence (AI) in medical imaging diagnosis, focusing on improving diagnostic accuracy and efficiency through advanced algorithms. It addresses the significant challenges preventing immediate clinical adoption of AI, specifically from technical, ethical, and legal perspectives. The aim is to highlight the current state of AI in medical imaging and outline the necessary steps to ensure safe, effective, and ethically sound clinical implementation. We conduct a comprehensive discussion, with special emphasis on the technical requirements for robust AI models, the ethical frameworks needed for responsible deployment, and the legal implications, including data privacy and regulatory compliance. Explainable artificial intelligence (XAI) is examined as a means to increase transparency and build trust among healthcare professionals and patients. The analysis reveals key challenges to AI integration in clinical settings, including the need for extensive high-quality datasets, model reliability, advanced infrastructure, and compliance with regulatory standards. The lack of explainability in AI outputs remains a barrier, with XAI identified as crucial for meeting transparency standards and enhancing trust among end users. Overcoming these barriers requires a collaborative, multidisciplinary approach to integrate AI into clinical practice responsibly. Addressing technical, ethical, and legal issues will support a softer transition, fostering a more accurate, efficient, and patient-centered healthcare system where AI augments traditional medical practices.

Securing Healthcare Data Integrity: Deepfake Detection Using Autonomous AI Approaches.

Hsu CC, Tsai MY, Yu CM

pubmed logopapersJul 9 2025
The rapid evolution of deepfake technology poses critical challenges to healthcare systems, particularly in safeguarding the integrity of medical imaging, electronic health records (EHR), and telemedicine platforms. As autonomous AI becomes increasingly integrated into smart healthcare, the potential misuse of deepfakes to manipulate sensitive healthcare data or impersonate medical professionals highlights the urgent need for robust and adaptive detection mechanisms. In this work, we propose DProm, a dynamic deepfake detection framework leveraging visual prompt tuning (VPT) with a pre-trained Swin Transformer. Unlike traditional static detection models, which struggle to adapt to rapidly evolving deepfake techniques, DProm fine-tunes a small set of visual prompts to efficiently adapt to new data distributions with minimal computational and storage requirements. Comprehensive experiments demonstrate that DProm achieves state-of-the-art performance in both static cross-dataset evaluations and dynamic scenarios, ensuring robust detection across diverse data distributions. By addressing the challenges of scalability, adaptability, and resource efficiency, DProm offers a transformative solution for enhancing the security and trustworthiness of autonomous AI systems in healthcare, paving the way for safer and more reliable smart healthcare applications.

AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

Carriero S, Canella R, Cicchetti F, Angileri A, Bruno A, Biondetti P, Colciago RR, D'Antonio A, Della Pepa G, Grassi F, Granata V, Lanza C, Santicchia S, Miceli A, Piras A, Salvestrini V, Santo G, Pesapane F, Barile A, Carrafiello G, Giovagnoni A

pubmed logopapersJul 9 2025
The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

Evolution of CT perfusion software in stroke imaging: from deconvolution to artificial intelligence.

Gragnano E, Cocozza S, Rizzuti M, Buono G, Elefante A, Guida A, Marseglia M, Tarantino M, Manganelli F, Tortora F, Briganti F

pubmed logopapersJul 9 2025
Computed tomography perfusion (CTP) represents one of the main determinants in the decision-making strategy of stroke patients, being very useful in triaging these patients. The aim of this review is to describe the current knowledge and the future applications of AI in CTP. This review contains a short technical description of the CTP technique and how perfusion parameters are currently estimated and applied in clinical practice. We then provided a comprehensive literature review on the performance of CTP analysis software aimed at understanding whether possible differences between commercially available software might have a direct implication on neuroradiological patient stratification, and therefore on their clinical outcomes. An overview of past, present, and future of software used for CTP estimation, with an emphasis on those AI-based, is provided. Finally, future challenges regarding technical aspects and ethical considerations are discussed. In the current state, most of the use of AI in CTP estimation is limited to some technical steps of the processing pipeline, and especially in the correction of motion artifacts, with deconvolution methods that are still widely used to generate CTP-derived variables. Major drawbacks in AI implementation are still present, especially regarding the "black-box" nature of some models, technical workflow implementations, and the economic costs. In the future, the integration of AI with all the information available in clinical practice should fulfill the aim of developing patient-specific CTP maps, which will overcome the current limitations of threshold-based decision-making processes and will lead physicians to better patient selection and earlier and more efficient treatments. KEY POINTS: Question AI is a widely investigated field in neuroradiology, yet no comprehensive review is yet available on its role in CT perfusion (CTP) in stroke patients. Findings AI in CTP is mainly used for motion correction; future integration with clinical data could enable personalized stroke treatment, despite ethical and economic challenges. Clinical relevance To date, AI in CTP mainly finds applications in image motion correction; although some ethical, technical, and vendor standardization issues remain, integrating AI with clinical data in stroke patients promises a possible improvement in patient outcomes.

Foundation models for radiology: fundamentals, applications, opportunities, challenges, risks, and prospects.

Akinci D'Antonoli T, Bluethgen C, Cuocolo R, Klontzas ME, Ponsiglione A, Kocak B

pubmed logopapersJul 8 2025
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-training and efficient fine-tuning, FMs can support diverse applications, including image interpretation, report generation, integrative diagnostics combining imaging with clinical/laboratory data, and synthetic data creation, holding significant promise for advancements in precision medicine. However, clinical translation of FMs faces several substantial challenges. Key concerns include the inherent opacity of model decision-making processes, environmental and social sustainability issues, risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent stochasticity and the risk of hallucination. This international collaborative effort provides a comprehensive overview of the fundamentals, applications, opportunities, challenges, and prospects of FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.

The future of multimodal artificial intelligence models for integrating imaging and clinical metadata: a narrative review.

Simon BD, Ozyoruk KB, Gelikman DG, Harmon SA, Türkbey B

pubmed logopapersJul 8 2025
With the ongoing revolution of artificial intelligence (AI) in medicine, the impact of AI in radiology is more pronounced than ever. An increasing number of technical and clinical AI-focused studies are published each day. As these tools inevitably affect patient care and physician practices, it is crucial that radiologists become more familiar with the leading strategies and underlying principles of AI. Multimodal AI models can combine both imaging and clinical metadata and are quickly becoming a popular approach that is being integrated into the medical ecosystem. This narrative review covers major concepts of multimodal AI through the lens of recent literature. We discuss emerging frameworks, including graph neural networks, which allow for explicit learning from non-Euclidean relationships, and transformers, which allow for parallel computation that scales, highlighting existing literature and advocating for a focus on emerging architectures. We also identify key pitfalls in current studies, including issues with taxonomy, data scarcity, and bias. By informing radiologists and biomedical AI experts about existing practices and challenges, we hope to guide the next wave of imaging-based multimodal AI research.

Post-hoc eXplainable AI methods for analyzing medical images of gliomas (- A review for clinical applications).

Ayaz H, Sümer-Arpak E, Ozturk-Isik E, Booth TC, Tormey D, McLoughlin I, Unnikrishnan S

pubmed logopapersJul 8 2025
Deep learning (DL) has shown promise in glioma imaging tasks using magnetic resonance imaging (MRI) and histopathology images, yet their complexity demands greater transparency in artificial intelligence (AI) systems. This is noticeable when users must understand the model output for a clinical application. In this systematic review, 65 post-hoc eXplainable AI (XAI), or interpretable AI studies, have been reviewed that provide an understanding of why a system generated a given output for tasks related to glioma imaging. A framework of post-hoc XAI methods, such as Gradient-based XAI (G-XAI) and Perturbation-based XAI (P-XAI), is introduced to evaluate deep models and explain their application in gliomas. The papers on XAI techniques in gliomas are surveyed and categorized by their specific aims such as grading, genetic biomarker detection, localization, intra-tumoral heterogeneity assessment, and survival analysis, and their XAI approach. This review highlights the growing integration of XAI in glioma imaging, demonstrating their role in bridging AI decision-making and medical diagnostics. The co-occurrence analysis emphasizes their role in enhancing model transparency and trust and guiding future research toward more reliable clinical applications. Finally, the current challenges associated with DL and XAI approaches and their clinical integration are discussed with an outlook on future opportunities from clinical users' perspectives and upcoming trends in XAI.

Emerging Frameworks for Objective Task-based Evaluation of Quantitative Medical Imaging Methods

Yan Liu, Huitian Xia, Nancy A. Obuchowski, Richard Laforest, Arman Rahmim, Barry A. Siegel, Abhinav K. Jha

arxiv logopreprintJul 7 2025
Quantitative imaging (QI) is demonstrating strong promise across multiple clinical applications. For clinical translation of QI methods, objective evaluation on clinically relevant tasks is essential. To address this need, multiple evaluation strategies are being developed. In this paper, based on previous literature, we outline four emerging frameworks to perform evaluation studies of QI methods. We first discuss the use of virtual imaging trials (VITs) to evaluate QI methods. Next, we outline a no-gold-standard evaluation framework to clinically evaluate QI methods without ground truth. Third, a framework to evaluate QI methods for joint detection and quantification tasks is outlined. Finally, we outline a framework to evaluate QI methods that output multi-dimensional parameters, such as radiomic features. We review these frameworks, discussing their utilities and limitations. Further, we examine future research areas in evaluation of QI methods. Given the recent advancements in PET, including long axial field-of-view scanners and the development of artificial-intelligence algorithms, we present these frameworks in the context of PET.

Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.

East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP

pubmed logopapersJul 7 2025
The integration of artificial intelligence (AI) with point-of-care ultrasound (POCUS) is transforming cardiovascular diagnostics by enhancing image acquisition, interpretation, and workflow efficiency. These advancements hold promise in expanding access to cardiovascular imaging in resource-limited settings and enabling early disease detection through screening applications. This review explores the opportunities and challenges of AI-enabled POCUS as it reshapes the landscape of cardiovascular imaging. AI-enabled systems can reduce operator dependency, improve image quality, and support clinicians-both novice and experienced-in capturing diagnostically valuable images, ultimately promoting consistency across diverse clinical environments. However, widespread adoption faces significant challenges, including concerns around algorithm generalizability, bias, explainability, clinician trust, and data privacy. Addressing these issues through standardized development, ethical oversight, and clinician-AI collaboration will be critical to safe and effective implementation. Looking ahead, emerging innovations-such as autonomous scanning, real-time predictive analytics, tele-ultrasound, and patient-performed imaging-underscore the transformative potential of AI-enabled POCUS in reshaping cardiovascular care and advancing equitable healthcare delivery worldwide.

AI-enabled obstetric point-of-care ultrasound as an emerging technology in low- and middle-income countries: provider and health system perspectives.

Della Ripa S, Santos N, Walker D

pubmed logopapersJul 4 2025
In many low- and middle-income countries (LMICs), widespread access to obstetric ultrasound is challenged by lack of trained providers, workload, and inadequate resources required for sustainability. Artificial intelligence (AI) is a powerful tool for automating image acquisition and interpretation and may help overcome these barriers. This study explored stakeholders' opinions about how AI-enabled point-of-care ultrasound (POCUS) might change current antenatal care (ANC) services in LMICs and identified key considerations for introduction. We purposely sampled midwives, doctors, researchers, and implementors for this mixed methods study, with a focus on those who live or work in African LMICs. Individuals completed an anonymous web-based survey, then participated in an interview or focus group. Among the 41 participants, we captured demographics, experience with and perceptions of standard POCUS, and reactions to an AI-enabled POCUS prototype description. Qualitative data were analyzed by thematic content analysis and quantitative Likert and rank-order data were aggregated as frequencies; the latter was presented alongside illustrative quotes to highlight overall versus nuanced perceptions. The following themes emerged: (1) priority AI capabilities; (2) potential impact on ANC quality, services and clinical outcomes; (3) health system integration considerations; and (4) research priorities. First, AI-enabled POCUS elicited concerns around algorithmic accuracy and compromised clinical acumen due to over-reliance on AI, but an interest in gestational age automation. Second, there was overall agreement that both standard and AI-enabled POCUS could improve ANC attendance (75%, 65%, respectively), provider-client trust (82%, 60%), and providers' confidence in clinical decision-making (85%, 70%). AI consistently elicited more uncertainty among respondents. Third, health system considerations emerged including task sharing with midwives, ultrasound training delivery and curricular content, and policy-related issues such as data security and liability risks. For both standard and AI-enabled POCUS, clinical decision support and referral strengthening were deemed necessary to improve outcomes. Lastly, ranked priority research areas included algorithm accuracy across diverse populations and impact on ANC performance indicators; mortality indicators were less prioritized. Optimism that AI-enabled POCUS can increase access in settings with limited personnel and resources is coupled with expressions of caution and potential risks that warrant careful consideration and exploration.
Page 1 of 11107 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.