Sort by:
Page 1 of 110 results

Challenges in Implementing Artificial Intelligence in Breast Cancer Screening Programs: Systematic Review and Framework for Safe Adoption.

Goh S, Goh RSJ, Chong B, Ng QX, Koh GCH, Ngiam KY, Hartman M

pubmed logopapersMay 15 2025
Artificial intelligence (AI) studies show promise in enhancing accuracy and efficiency in mammographic screening programs worldwide. However, its integration into clinical workflows faces several challenges, including unintended errors, the need for professional training, and ethical concerns. Notably, specific frameworks for AI imaging in breast cancer screening are still lacking. This study aims to identify the challenges associated with implementing AI in breast screening programs and to apply the Consolidated Framework for Implementation Research (CFIR) to discuss a practical governance framework for AI in this context. Three electronic databases (PubMed, Embase, and MEDLINE) were searched using combinations of the keywords "artificial intelligence," "regulation," "governance," "breast cancer," and "screening." Original studies evaluating AI in breast cancer detection or discussing challenges related to AI implementation in this setting were eligible for review. Findings were narratively synthesized and subsequently mapped directly onto the constructs within the CFIR. A total of 1240 results were retrieved, with 20 original studies ultimately included in this systematic review. The majority (n=19) focused on AI-enhanced mammography, while 1 addressed AI-enhanced ultrasound for women with dense breasts. Most studies originated from the United States (n=5) and the United Kingdom (n=4), with publication years ranging from 2019 to 2023. The quality of papers was rated as moderate to high. The key challenges identified were reproducibility, evidentiary standards, technological concerns, trust issues, as well as ethical, legal, societal concerns, and postadoption uncertainty. By aligning these findings with the CFIR constructs, action plans targeting the main challenges were incorporated into the framework, facilitating a structured approach to addressing these issues. This systematic review identifies key challenges in implementing AI in breast cancer screening, emphasizing the need for consistency, robust evidentiary standards, technological advancements, user trust, ethical frameworks, legal safeguards, and societal benefits. These findings can serve as a blueprint for policy makers, clinicians, and AI developers to collaboratively advance AI adoption in breast cancer screening. PROSPERO CRD42024553889; https://tinyurl.com/mu4nwcxt.

On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging

Haozhe Luo, Ziyu Zhou, Zixin Shu, Aurélie Pahud de Mortanges, Robert Berke, Mauricio Reyes

arxiv logopreprintMay 15 2025
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.

Explainability Through Human-Centric Design for XAI in Lung Cancer Detection

Amy Rafferty, Rishi Ramaesh, Ajitha Rajan

arxiv logopreprintMay 14 2025
Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.

Privacy-preserving Federated Learning and Uncertainty Quantification in Medical Imaging.

Koutsoubis N, Waqas A, Yilmaz Y, Ramachandran RP, Schabath MB, Rasool G

pubmed logopapersMay 14 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Artificial Intelligence (AI) has demonstrated strong potential in automating medical imaging tasks, with potential applications across disease diagnosis, prognosis, treatment planning, and posttreatment surveillance. However, privacy concerns surrounding patient data remain a major barrier to the widespread adoption of AI in clinical practice, as large and diverse training datasets are essential for developing accurate, robust, and generalizable AI models. Federated Learning offers a privacy-preserving solution by enabling collaborative model training across institutions without sharing sensitive data. Instead, model parameters, such as model weights, are exchanged between participating sites. Despite its potential, federated learning is still in its early stages of development and faces several challenges. Notably, sensitive information can still be inferred from the shared model parameters. Additionally, postdeployment data distribution shifts can degrade model performance, making uncertainty quantification essential. In federated learning, this task is particularly challenging due to data heterogeneity across participating sites. This review provides a comprehensive overview of federated learning, privacy-preserving federated learning, and uncertainty quantification in federated learning. Key limitations in current methodologies are identified, and future research directions are proposed to enhance data privacy and trustworthiness in medical imaging applications. ©RSNA, 2025.

DCSNet: A Lightweight Knowledge Distillation-Based Model with Explainable AI for Lung Cancer Diagnosis from Histopathological Images

Sadman Sakib Alif, Nasim Anzum Promise, Fiaz Al Abid, Aniqua Nusrat Zereen

arxiv logopreprintMay 14 2025
Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.

Deeply Explainable Artificial Neural Network

David Zucker

arxiv logopreprintMay 10 2025
While deep learning models have demonstrated remarkable success in numerous domains, their black-box nature remains a significant limitation, especially in critical fields such as medical image analysis and inference. Existing explainability methods, such as SHAP, LIME, and Grad-CAM, are typically applied post hoc, adding computational overhead and sometimes producing inconsistent or ambiguous results. In this paper, we present the Deeply Explainable Artificial Neural Network (DxANN), a novel deep learning architecture that embeds explainability ante hoc, directly into the training process. Unlike conventional models that require external interpretation methods, DxANN is designed to produce per-sample, per-feature explanations as part of the forward pass. Built on a flow-based framework, it enables both accurate predictions and transparent decision-making, and is particularly well-suited for image-based tasks. While our focus is on medical imaging, the DxANN architecture is readily adaptable to other data modalities, including tabular and sequential data. DxANN marks a step forward toward intrinsically interpretable deep learning, offering a practical solution for applications where trust and accountability are essential.

Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography.

Knopp M, Bender CJ, Holzwarth N, Li Y, Kempf J, Caranovic M, Knieling F, Lang W, Rother U, Seitel A, Maier-Hein L, Dreher KK

pubmed logopapersMay 9 2025
Shortcut learning has been identified as a source of algorithmic unfairness in medical imaging artificial intelligence (AI), but its impact on photoacoustic tomography (PAT), particularly concerning sex bias, remains underexplored. This study investigates this issue using peripheral artery disease (PAD) diagnosis as a specific clinical application. To examine the potential for sex bias due to shortcut learning in convolutional neural network (CNNs) and assess how such biases might affect diagnostic predictions, we created training and test datasets with varying PAD prevalence between sexes. Using these datasets, we explored (1) whether CNNs can classify the sex from imaging data, (2) how sex-specific prevalence shifts impact PAD diagnosis performance and underdiagnosis disparity between sexes, and (3) how similarly CNNs encode sex and PAD features. Our study with 147 individuals demonstrates that CNNs can classify the sex from calf muscle PAT images, achieving an AUROC of 0.75. For PAD diagnosis, models trained on data with imbalanced sex-specific disease prevalence experienced significant performance drops (up to 0.21 AUROC) when applied to balanced test sets. Additionally, greater imbalances in sex-specific prevalence within the training data exacerbated underdiagnosis disparities between sexes. Finally, we identify evidence of shortcut learning by demonstrating the effective reuse of learned feature representations between PAD diagnosis and sex classification tasks. CNN-based models trained on PAT data may engage in shortcut learning by leveraging sex-related features, leading to biased and unreliable diagnostic predictions. Addressing demographic-specific prevalence imbalances and preventing shortcut learning is critical for developing models in the medical field that are both accurate and equitable across diverse patient populations.

Medical machine learning operations: a framework to facilitate clinical AI development and deployment in radiology.

de Almeida JG, Messiou C, Withey SJ, Matos C, Koh DM, Papanikolaou N

pubmed logopapersMay 8 2025
The integration of machine-learning technologies into radiology practice has the potential to significantly enhance diagnostic workflows and patient care. However, the successful deployment and maintenance of medical machine-learning (MedML) systems in radiology requires robust operational frameworks. Medical machine-learning operations (MedMLOps) offer a structured approach ensuring persistent MedML reliability, safety, and clinical relevance. MedML systems are increasingly employed to analyse sensitive clinical and radiological data, which continuously changes due to advancements in data acquisition and model development. These systems can alleviate the workload of radiologists by streamlining diagnostic tasks, such as image interpretation and triage. MedMLOps ensures that such systems stay accurate and dependable by facilitating continuous performance monitoring, systematic validation, and simplified model maintenance-all critical to maintaining trust in machine-learning-driven diagnostics. Furthermore, MedMLOps aligns with established principles of patient data protection and regulatory compliance, including recent developments in the European Union, emphasising transparency, documentation, and safe model retraining. This enables radiologists to implement modern machine-learning tools with control and oversight at the forefront, ensuring reliable model performance within the dynamic context of clinical practice. MedMLOps empowers radiologists to deliver consistent, high-quality care with confidence, ensuring that MedML systems stay aligned with evolving medical standards and patient needs. MedMLOps can assist multiple stakeholders in radiology by ensuring models are available, continuously monitored and easy to use and maintain while preserving patient privacy. MedMLOps can better serve patients by facilitating the clinical implementation of cutting-edge MedML and clinicians by ensuring that MedML models are only utilised when they are performing as expected. KEY POINTS: Question MedML applications are becoming increasingly adopted in clinics, but the necessary infrastructure to sustain these applications is currently not well-defined. Findings Adapting machine learning operations concepts enhances MedML ecosystems by improving interoperability, automating monitoring/validation, and reducing deployment burdens on clinicians and medical informaticians. Clinical relevance Implementing these solutions eases the faster and safer adoption of advanced MedML models, ensuring consistent performance while reducing workload for clinicians, benefiting patient care through streamlined diagnostic workflows.

False Promises in Medical Imaging AI? Assessing Validity of Outperformance Claims

Evangelia Christodoulou, Annika Reinke, Pascaline Andrè, Patrick Godau, Piotr Kalinowski, Rola Houhou, Selen Erkan, Carole H. Sudre, Ninon Burgos, Sofiène Boutaj, Sophie Loizillon, Maëlys Solal, Veronika Cheplygina, Charles Heitz, Michal Kozubek, Michela Antonelli, Nicola Rieke, Antoine Gilson, Leon D. Mayer, Minu D. Tizabi, M. Jorge Cardoso, Amber Simpson, Annette Kopp-Schneider, Gaël Varoquaux, Olivier Colliot, Lena Maier-Hein

arxiv logopreprintMay 7 2025
Performance comparisons are fundamental in medical imaging Artificial Intelligence (AI) research, often driving claims of superiority based on relative improvements in common performance metrics. However, such claims frequently rely solely on empirical mean performance. In this paper, we investigate whether newly proposed methods genuinely outperform the state of the art by analyzing a representative cohort of medical imaging papers. We quantify the probability of false claims based on a Bayesian approach that leverages reported results alongside empirically estimated model congruence to estimate whether the relative ranking of methods is likely to have occurred by chance. According to our results, the majority (>80%) of papers claims outperformance when introducing a new method. Our analysis further revealed a high probability (>5%) of false outperformance claims in 86% of classification papers and 53% of segmentation papers. These findings highlight a critical flaw in current benchmarking practices: claims of outperformance in medical imaging AI are frequently unsubstantiated, posing a risk of misdirecting future research efforts.

Opinions and preferences regarding artificial intelligence use in healthcare delivery: results from a national multi-site survey of breast imaging patients.

Dontchos BN, Dodelzon K, Bhole S, Edmonds CE, Mullen LA, Parikh JR, Daly CP, Epling JA, Christensen S, Grimm LJ

pubmed logopapersMay 6 2025
Artificial intelligence (AI) utilization is growing, but patient perceptions of AI are unclear. Our objective was to understand patient perceptions of AI through a multi-site survey of breast imaging patients. A 36-question survey was distributed to eight US practices (6 academic, 2 non-academic) from October 2023 through October 2024. This manuscript analyzes a subset of questions from the survey addressing digital health literacy and attitudes towards AI in medicine and breast imaging specifically. Multivariable analysis compared responses by respondent demographics. A total of 3,532 surveys were collected (response rate: 69.9%, 3,532/5053). Median respondent age was 55 years (IQR 20). Most respondents were White (73.0%, 2579/3532) and had completed college (77.3%, 2732/3532). Overall, respondents were undecided (range: 43.2%-50.8%) regarding questions about general perceptions of AI in healthcare. Respondents with higher electronic health literacy, more education, and younger age were significantly more likely to consider it useful to use utilize AI for aiding medical tasks (all p<0.001). In contrast, respondents with lower electronic health literacy and less education were significantly more likely to indicate it was a bad idea for AI to perform medical tasks (p<0.001). Non-White patients were more likely to express concerns that AI will not work as well for some groups compared to others (p<0.05). Overall, favorable opinions of AI use for medical tasks were associated with younger age, more education, and higher electronic health literacy. As AI is increasingly implemented into clinical workflows, it is important to educate patients and provide transparency to build patient understanding and trust.
Page 1 of 110 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.