Automatic selection of optimal TI for flow-independent dark-blood delayed-enhancement MRI.
Authors
Affiliations (5)
Affiliations (5)
- Department of Automation and Information Technology, Transilvania University of Brasov, Brasov, Romania.
- Siemens SRL, Brasov, Romania.
- Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA.
- Duke Cardiovascular MR Center, Duke University, Durham, North Carolina, USA.
- Siemens Healthineers AG, Hamburg, Germany.
Abstract
Propose and evaluate an automatic approach for predicting the optimal inversion time (TI) for dark and gray blood images for flow-independent dark-blood delayed-enhancement (FIDDLE) acquisition based on free-breathing FIDDLE TI-scout images. In 267 patients, the TI-scout sequence acquired single-shot magnetization-prepared and associated reference images (without preparation) on a 3 T Magnetom Vida and a 1.5 T Magnetom Sola scanner. Data were reconstructed into phase-corrected TI-scout images typically covering TIs from 140 to 440 ms (20 ms increment). A deep learning network was trained to segment the myocardium and blood pool in reference images. These segmentation masks were transferred to the TI-scout images to derive intensity features of myocardium and blood, with which T<sub>1</sub>-recovery curves were determined by logarithmic fitting. The optimal TI for dark and gray blood images were derived as linear functions of the TI in which both T<sub>1</sub>-curves cross. This TI-prediction pipeline was evaluated in 64 clinical subjects. The pipeline predicted optimal TIs with an average error less than 10 ms compared to manually annotated optimal TIs. The presented approach reliably and automatically predicted optimal TI for dark and gray blood FIDDLE acquisition, with an average error less than the TI increment of the FIDDLE TI-scout sequence.