Sort by:
Page 1 of 40395 results
Next

SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.

Massalimova A, Liebmann F, Jecklin S, Carrillo F, Farshad M, Fürnstahl P

pubmed logopapersDec 1 2025
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.

Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

Chen CW, Tsai HH, Yeh CY, Yang CK, Tsou HK, Leong PY, Wei JC

pubmed logopapersDec 1 2025
The development of the Artificial Intelligence (AI)-based severity inspection model for ankylosing spondylitis (AS) could support health professionals to rapidly assess the severity of the disease, enhance proficiency, and reduce the demands of human resources. This paper aims to develop an AI-based severity inspection model for AS using patients' X-ray images and modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). The numerical simulation with AI is developed following the progress of data preprocessing, building and testing the model, and then the model. The training data is preprocessed by inviting three experts to check the X-ray images of 222 patients following the Gold Standard. The model is then developed through two stages, including keypoint detection and mSASSS evaluation. The two-stage AI-based severity inspection model for AS was developed to automatically detect spine points and evaluate mSASSS scores. At last, the data obtained from the developed model was compared with those from experts' assessment to analyse the accuracy of the model. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki. The spine point detection at the first stage achieved 1.57 micrometres in mean error distance with the ground truth, and the second stage of the classification network can reach 0.81 in mean accuracy. The model can correctly identify 97.4% patches belonging to mSASSS score 3, while those belonging to score 0 can still be classified into scores 1 or 2. The automatic severity inspection model for AS developed in this paper is accurate and can support health professionals in rapidly assessing the severity of AS, enhancing assessment proficiency, and reducing the demands of human resources.

Automated Measurements of Spinal Parameters for Scoliosis Using Deep Learning.

Meng X, Zhu S, Yang Q, Zhu F, Wang Z, Liu X, Dong P, Wang S, Fan L

pubmed logopapersJun 15 2025
Retrospective single-institution study. To develop and validate an automated convolutional neural network (CNN) to measure the Cobb angle, T1 tilt angle, coronal balance, clavicular angle, height of the shoulders, T5-T12 Cobb angle, and sagittal balance for accurate scoliosis diagnosis. Scoliosis, characterized by a Cobb angle >10°, requires accurate and reliable measurements to guide treatment. Traditional manual measurements are time-consuming and have low interobserver and intraobserver reliability. While some automated tools exist, they often require manual intervention and focus primarily on the Cobb angle. In this study, we utilized four data sets comprising the anterior-posterior (AP) and lateral radiographs of 1682 patients with scoliosis. The CNN includes coarse segmentation, landmark localization, and fine segmentation. The measurements were evaluated using the dice coefficient, mean absolute error (MAE), and percentage of correct key-points (PCK) with a 3-mm threshold. An internal testing set, including 87 adolescent (7-16 yr) and 26 older adult patients (≥60 yr), was used to evaluate the agreement between automated and manual measurements. The automated measures by the CNN achieved high mean dice coefficients (>0.90), PCK of 89.7%-93.7%, and MAE for vertebral corners of 2.87-3.62 mm on AP radiographs. Agreement on the internal testing set for manual measurements was acceptable, with an MAE of 0.26 mm or degree-0.51 mm or degree for the adolescent subgroup and 0.29 mm or degree-4.93 mm or degree for the older adult subgroup on AP radiographs. The MAE for the T5-T12 Cobb angle and sagittal balance, on lateral radiographs, was 1.03° and 0.84 mm, respectively, in adolescents, and 4.60° and 9.41 mm, respectively, in older adults. Automated measurement time was significantly shorter compared with manual measurements. The deep learning automated system provides rapid, accurate, and reliable measurements for scoliosis diagnosis, which could improve clinical workflow efficiency and guide scoliosis treatment. Level III.

Automated quantification of T1 and T2 relaxation times in liver mpMRI using deep learning: a sequence-adaptive approach.

Zbinden L, Erb S, Catucci D, Doorenbos L, Hulbert L, Berzigotti A, Brönimann M, Ebner L, Christe A, Obmann VC, Sznitman R, Huber AT

pubmed logopapersJun 14 2025
To evaluate a deep learning sequence-adaptive liver multiparametric MRI (mpMRI) assessment with validation in different populations using total and segmental T1 and T2 relaxation time maps. A neural network was trained to label liver segmental parenchyma and its vessels on noncontrast T1-weighted gradient-echo Dixon in-phase acquisitions on 200 liver mpMRI examinations. Then, 120 unseen liver mpMRI examinations of patients with primary sclerosing cholangitis or healthy controls were assessed by coregistering the labels to noncontrast and contrast-enhanced T1 and T2 relaxation time maps for optimization and internal testing. The algorithm was externally tested in a segmental and total liver analysis of previously unseen 65 patients with biopsy-proven liver fibrosis and 25 healthy volunteers. Measured relaxation times were compared to manual measurements using intraclass correlation coefficient (ICC) and Wilcoxon test. Comparison of manual and deep learning-generated segmental areas on different T1 and T2 maps was excellent for segmental (ICC = 0.95 ± 0.1; p < 0.001) and total liver assessment (0.97 ± 0.02, p < 0.001). The resulting median of the differences between automated and manual measurements among all testing populations and liver segments was 1.8 ms for noncontrast T1 (median 835 versus 842 ms), 2.0 ms for contrast-enhanced T1 (median 518 versus 519 ms), and 0.3 ms for T2 (median 37 versus 37 ms). Automated quantification of liver mpMRI is highly effective across different patient populations, offering excellent reliability for total and segmental T1 and T2 maps. Its scalable, sequence-adaptive design could foster comprehensive clinical decision-making. The proposed automated, sequence-adaptive algorithm for total and segmental analysis of liver mpMRI may be co-registered to any combination of parametric sequences, enabling comprehensive quantitative analysis of liver mpMRI without sequence-specific training. A deep learning-based algorithm automatically quantified segmental T1 and T2 relaxation times in liver mpMRI. The two-step approach of segmentation and co-registration allowed to assess arbitrary sequences. The algorithm demonstrated high reliability with manual reader quantification. No additional sequence-specific training is required to assess other parametric sequences. The DL algorithm has the potential to enhance individual liver phenotyping.

Multi-class transformer-based segmentation of pancreatic ductal adenocarcinoma and surrounding structures in CT imaging: a multi-center evaluation.

Wen S, Xiao X

pubmed logopapersJun 14 2025
Accurate segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding anatomical structures is critical for diagnosis, treatment planning, and outcome assessment. This study proposes a deep learning-based framework to automate multi-class segmentation in CT images, comparing the performance of four state-of-the-art architectures. This retrospective multi-center study included 3265 patients from six institutions. Four deep learning models-UNet, nnU-Net, UNETR, and Swin-UNet-were trained using five-fold cross-validation on data from five centers and tested independently on a sixth center (n = 569). Preprocessing included intensity normalization, voxel resampling, and standardized annotation for six structures: PDAC lesion, pancreas, veins, arteries, pancreatic duct, and common bile duct. Evaluation metrics included Dice Similarity Coefficient (DSC), Intersection over Union (IoU), directed Hausdorff Distance (dHD), Average Symmetric Surface Distance (ASSD), and Volume Overlap Error (VOE). Statistical comparisons were made using Wilcoxon signed-rank tests with Bonferroni correction. Swin-UNet outperformed all models with a mean validation DSC of 92.4% and test DSC of 90.8%, showing minimal overfitting. It also achieved the lowest dHD (4.3 mm), ASSD (1.2 mm), and VOE (6.0%) in cross-validation. Per-class DSCs for Swin-UNet were consistently higher across all anatomical targets, including challenging structures like the pancreatic duct (91.0%) and bile duct (91.8%). Statistical analysis confirmed the superiority of Swin-UNet (p < 0.001). All models showed generalization capability, but Swin-UNet provided the most accurate and robust segmentation across datasets. Transformer-based architectures, particularly Swin-UNet, enable precise and generalizable multi-class segmentation of PDAC and surrounding anatomy. This framework has potential for clinical integration in PDAC diagnosis, staging, and therapy planning.

Qualitative evaluation of automatic liver segmentation in computed tomography images for clinical use in radiation therapy.

Khalal DM, Slimani S, Bouraoui ZE, Azizi H

pubmed logopapersJun 14 2025
Segmentation of target volumes and organs at risk on computed tomography (CT) images constitutes an important step in the radiotherapy workflow. Artificial intelligence-based methods have significantly improved organ segmentation in medical images. Automatic segmentations are frequently evaluated using geometric metrics. Before a clinical implementation in the radiotherapy workflow, automatic segmentations must also be evaluated by clinicians. The aim of this study was to investigate the correlation between geometric metrics used for segmentation evaluation and the assessment performed by clinicians. In this study, we used the U-Net model to segment the liver in CT images from a publicly available dataset. The model's performance was evaluated using two geometric metrics: the Dice similarity coefficient and the Hausdorff distance. Additionally, a qualitative evaluation was performed by clinicians who reviewed the automatic segmentations to rate their clinical acceptability for use in the radiotherapy workflow. The correlation between the geometric metrics and the clinicians' evaluations was studied. The results showed that while the Dice coefficient and Hausdorff distance are reliable indicators of segmentation accuracy, they do not always align with clinician segmentation. In some cases, segmentations with high Dice scores still required clinician corrections before clinical use in the radiotherapy workflow. This study highlights the need for more comprehensive evaluation metrics beyond geometric measures to assess the clinical acceptability of artificial intelligence-based segmentation. Although the deep learning model provided promising segmentation results, the present study shows that standardized validation methodologies are crucial for ensuring the clinical viability of automatic segmentation systems.

3D Skin Segmentation Methods in Medical Imaging: A Comparison

Martina Paccini, Giuseppe Patanè

arxiv logopreprintJun 13 2025
Automatic segmentation of anatomical structures is critical in medical image analysis, aiding diagnostics and treatment planning. Skin segmentation plays a key role in registering and visualising multimodal imaging data. 3D skin segmentation enables applications in personalised medicine, surgical planning, and remote monitoring, offering realistic patient models for treatment simulation, procedural visualisation, and continuous condition tracking. This paper analyses and compares algorithmic and AI-driven skin segmentation approaches, emphasising key factors to consider when selecting a strategy based on data availability and application requirements. We evaluate an iterative region-growing algorithm and the TotalSegmentator, a deep learning-based approach, across different imaging modalities and anatomical regions. Our tests show that AI segmentation excels in automation but struggles with MRI due to its CT-based training, while the graphics-based method performs better for MRIs but introduces more noise. AI-driven segmentation also automates patient bed removal in CT, whereas the graphics-based method requires manual intervention.

DMAF-Net: An Effective Modality Rebalancing Framework for Incomplete Multi-Modal Medical Image Segmentation

Libin Lan, Hongxing Li, Zunhui Xia, Yudong Zhang

arxiv logopreprintJun 13 2025
Incomplete multi-modal medical image segmentation faces critical challenges from modality imbalance, including imbalanced modality missing rates and heterogeneous modality contributions. Due to their reliance on idealized assumptions of complete modality availability, existing methods fail to dynamically balance contributions and neglect the structural relationships between modalities, resulting in suboptimal performance in real-world clinical scenarios. To address these limitations, we propose a novel model, named Dynamic Modality-Aware Fusion Network (DMAF-Net). The DMAF-Net adopts three key ideas. First, it introduces a Dynamic Modality-Aware Fusion (DMAF) module to suppress missing-modality interference by combining transformer attention with adaptive masking and weight modality contributions dynamically through attention maps. Second, it designs a synergistic Relation Distillation and Prototype Distillation framework to enforce global-local feature alignment via covariance consistency and masked graph attention, while ensuring semantic consistency through cross-modal class-specific prototype alignment. Third, it presents a Dynamic Training Monitoring (DTM) strategy to stabilize optimization under imbalanced missing rates by tracking distillation gaps in real-time, and to balance convergence speeds across modalities by adaptively reweighting losses and scaling gradients. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Our code is available at https://github.com/violet-42/DMAF-Net.

High visceral-to-subcutaneous fat area ratio is an unfavorable prognostic indicator in patients with uterine sarcoma.

Kurokawa M, Gonoi W, Hanaoka S, Kurokawa R, Uehara S, Kato M, Suzuki M, Toyohara Y, Takaki Y, Kusakabe M, Kino N, Tsukazaki T, Unno T, Sone K, Abe O

pubmed logopapersJun 12 2025
Uterine sarcoma is a rare disease whose association with body composition parameters is poorly understood. This study explored the impact of body composition parameters on overall survival with uterine sarcoma. This multicenter study included 52 patients with uterine sarcomas treated at three Japanese hospitals between 2007 and 2023. A semi-automatic segmentation program based on deep learning analyzed transaxial CT images at the L3 vertebral level, calculating body composition parameters as follows: area indices (areas divided by height squared) of skeletal muscle, visceral and subcutaneous adipose tissue (SMI, VATI, and SATI, respectively); skeletal muscle density; and the visceral-to-subcutaneous fat area ratio (VSR). The optimal cutoff values for each parameter were calculated using maximally selected rank statistics with several p value approximations. The effects of body composition parameters and clinical data on overall survival (OS) and cancer-specific survival (CSS) were analyzed. Univariate Cox proportional hazards regression analysis revealed that advanced stage (III-IV) and high VSR were unfavorable prognostic factors for both OS and CSS. Multivariate Cox proportional hazard regression analysis revealed that advanced stage (III-IV) (hazard ratios (HRs), 4.67 for OS and 4.36 for CSS, p < 0.01), and high VSR (HRs, 9.36 for OS and 8.22 for CSS, p < 0.001) were poor prognostic factors for both OS and CSS. Added values were observed when the VSR was incorporated into the OS and the CSS prediction models. Increased VSR and tumor stage are significant predictors of poor overall survival in patients with uterine sarcoma.

Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy.

Wang J, Mateen M, Xiang D, Zhu W, Shi F, Huang J, Sun K, Dai J, Xu J, Zhang S, Chen X

pubmed logopapersJun 12 2025
Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and laborintensive to obtain for medical image segmentation tasks. Metalearning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model's performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that metalearning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.
Page 1 of 40395 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.