Sort by:
Page 1 of 99981 results
Next

MLP-UNet: an algorithm for segmenting lesions in breast and thyroid ultrasound images.

Dong TF, Zhou CJ, Huang ZY, Zhao H, Wang XL, Yan SJ

pubmed logopapersDec 1 2025
Breast and thyroid cancers are among the most prevalent and fastest growing malignancies worldwide with ultrasound imaging serving as the primary modality for screening and surgical navigation of these lesions. Accurate and real-time lesion segmentation in ultrasound images is crucial for guiding precise needle placement during biopsies and surgeries. To address this clinical need, we propose <b>MLP-UNet</b>, a deep learning model for automatic segmentation of breast tumors and thyroid nodules in ultrasound images. MLP-UNet adopts an encoder-decoder architecture with a U-shaped structure and integrates a MLP-based module(MAP) module within the encoder stage. Attention module is a lightweight employed during the skip connections to enhance feature representation. Using only using 33.75 M parameters, MLP-UNet achieves state-of-the-art segmentation performance. On the BUSI, it attains Dice, IoU, and Recall of 80.61%, 67.93%, and 80.48%, respectively. And on the DDTI, it attains Dice, IoU, and Recall of 81.67% for Dice, 71.72%. These results outperform several classical and state-of-the-art segmentation networks while maintaining low computational complexity, highlighting its significant potential for clinical application in ultrasound-guided surgical navigation systems.

SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.

Massalimova A, Liebmann F, Jecklin S, Carrillo F, Farshad M, Fürnstahl P

pubmed logopapersDec 1 2025
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.

Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

Chen CW, Tsai HH, Yeh CY, Yang CK, Tsou HK, Leong PY, Wei JC

pubmed logopapersDec 1 2025
The development of the Artificial Intelligence (AI)-based severity inspection model for ankylosing spondylitis (AS) could support health professionals to rapidly assess the severity of the disease, enhance proficiency, and reduce the demands of human resources. This paper aims to develop an AI-based severity inspection model for AS using patients' X-ray images and modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). The numerical simulation with AI is developed following the progress of data preprocessing, building and testing the model, and then the model. The training data is preprocessed by inviting three experts to check the X-ray images of 222 patients following the Gold Standard. The model is then developed through two stages, including keypoint detection and mSASSS evaluation. The two-stage AI-based severity inspection model for AS was developed to automatically detect spine points and evaluate mSASSS scores. At last, the data obtained from the developed model was compared with those from experts' assessment to analyse the accuracy of the model. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki. The spine point detection at the first stage achieved 1.57 micrometres in mean error distance with the ground truth, and the second stage of the classification network can reach 0.81 in mean accuracy. The model can correctly identify 97.4% patches belonging to mSASSS score 3, while those belonging to score 0 can still be classified into scores 1 or 2. The automatic severity inspection model for AS developed in this paper is accurate and can support health professionals in rapidly assessing the severity of AS, enhancing assessment proficiency, and reducing the demands of human resources.

Aortic atherosclerosis evaluation using deep learning based on non-contrast CT: A retrospective multi-center study.

Yang M, Lyu J, Xiong Y, Mei A, Hu J, Zhang Y, Wang X, Bian X, Huang J, Li R, Xing X, Su S, Gao J, Lou X

pubmed logopapersAug 15 2025
Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.

SingleStrip: learning skull-stripping from a single labeled example

Bella Specktor-Fadida, Malte Hoffmann

arxiv logopreprintAug 14 2025
Deep learning segmentation relies heavily on labeled data, but manual labeling is laborious and time-consuming, especially for volumetric images such as brain magnetic resonance imaging (MRI). While recent domain-randomization techniques alleviate the dependency on labeled data by synthesizing diverse training images from label maps, they offer limited anatomical variability when very few label maps are available. Semi-supervised self-training addresses label scarcity by iteratively incorporating model predictions into the training set, enabling networks to learn from unlabeled data. In this work, we combine domain randomization with self-training to train three-dimensional skull-stripping networks using as little as a single labeled example. First, we automatically bin voxel intensities, yielding labels we use to synthesize images for training an initial skull-stripping model. Second, we train a convolutional autoencoder (AE) on the labeled example and use its reconstruction error to assess the quality of brain masks predicted for unlabeled data. Third, we select the top-ranking pseudo-labels to fine-tune the network, achieving skull-stripping performance on out-of-distribution data that approaches models trained with more labeled images. We compare AE-based ranking to consistency-based ranking under test-time augmentation, finding that the AE approach yields a stronger correlation with segmentation accuracy. Our results highlight the potential of combining domain randomization and AE-based quality control to enable effective semi-supervised segmentation from extremely limited labeled data. This strategy may ease the labeling burden that slows progress in studies involving new anatomical structures or emerging imaging techniques.

SimAQ: Mitigating Experimental Artifacts in Soft X-Ray Tomography using Simulated Acquisitions

Jacob Egebjerg, Daniel Wüstner

arxiv logopreprintAug 14 2025
Soft X-ray tomography (SXT) provides detailed structural insight into whole cells but is hindered by experimental artifacts such as the missing wedge and by limited availability of annotated datasets. We present \method, a simulation pipeline that generates realistic cellular phantoms and applies synthetic artifacts to produce paired noisy volumes, sinograms, and reconstructions. We validate our approach by training a neural network primarily on synthetic data and demonstrate effective few-shot and zero-shot transfer learning on real SXT tomograms. Our model delivers accurate segmentations, enabling quantitative analysis of noisy tomograms without relying on large labeled datasets or complex reconstruction methods.

Deep Learning-Based Instance-Level Segmentation of Kidney and Liver Cysts in CT Images of Patients Affected by Polycystic Kidney Disease.

Gregory AV, Khalifa M, Im J, Ramanathan S, Elbarougy DE, Cruz C, Yang H, Denic A, Rule AD, Chebib FT, Dahl NK, Hogan MC, Harris PC, Torres VE, Erickson BJ, Potretzke TA, Kline TL

pubmed logopapersAug 14 2025
Total kidney and liver volumes are key image-based biomarkers to predict the severity of kidney and liver phenotype in autosomal dominant polycystic kidney disease (ADPKD). However, MRI-based advanced biomarkers like total cyst number (TCN) and cyst parenchyma surface area (CPSA) have been shown to more accurately assess cyst burden and improve the prediction of disease progression. The main aim of this study is to extend the calculation of advanced biomarkers to other imaging modalities; thus, we propose a fully automated model to segment kidney and liver cysts in CT images. Abdominal CTs of ADPKD patients were gathered retrospectively between 2001-2018. A 3D deep-learning method using the nnU-Net architecture was trained to learn cyst edges-cores and the non-cystic kidney/liver parenchyma. Separate segmentation models were trained for kidney cysts in contrast-enhanced CTs and liver cysts in non-contrast CTs using an active learning approach. Two experienced research fellows manually generated the reference standard segmentation, which were reviewed by an expert radiologist for accuracy. Two-hundred CT scans from 148 patients (mean age, 51.2 ± 14.1 years; 48% male) were utilized for model training (80%) and testing (20%). In the test set, both models showed good agreement with the reference standard segmentations, similar to the agreement between two independent human readers (model vs reader: TCNkidney/liver r=0.96/0.97 and CPSAkidney r=0.98), inter-reader: TCNkidney/liver r=0.96/0.98 and CPSAkidney r=0.99). Our study demonstrates that automated models can segment kidney and liver cysts accurately in CT scans of patients with ADPKD.

Beam Hardening Correction in Clinical X-ray Dark-Field Chest Radiography using Deep Learning-Based Bone Segmentation

Lennard Kaster, Maximilian E. Lochschmidt, Anne M. Bauer, Tina Dorosti, Sofia Demianova, Thomas Koehler, Daniela Pfeiffer, Franz Pfeiffer

arxiv logopreprintAug 14 2025
Dark-field radiography is a novel X-ray imaging modality that enables complementary diagnostic information by visualizing the microstructural properties of lung tissue. Implemented via a Talbot-Lau interferometer integrated into a conventional X-ray system, it allows simultaneous acquisition of perfectly temporally and spatially registered attenuation-based conventional and dark-field radiographs. Recent clinical studies have demonstrated that dark-field radiography outperforms conventional radiography in diagnosing and staging pulmonary diseases. However, the polychromatic nature of medical X-ray sources leads to beam-hardening, which introduces structured artifacts in the dark-field radiographs, particularly from osseous structures. This so-called beam-hardening-induced dark-field signal is an artificial dark-field signal and causes undesired cross-talk between attenuation and dark-field channels. This work presents a segmentation-based beam-hardening correction method using deep learning to segment ribs and clavicles. Attenuation contribution masks derived from dual-layer detector computed tomography data, decomposed into aluminum and water, were used to refine the material distribution estimation. The method was evaluated both qualitatively and quantitatively on clinical data from healthy subjects and patients with chronic obstructive pulmonary disease and COVID-19. The proposed approach reduces bone-induced artifacts and improves the homogeneity of the lung dark-field signal, supporting more reliable visual and quantitative assessment in clinical dark-field chest radiography.

Pathology-Guided AI System for Accurate Segmentation and Diagnosis of Cervical Spondylosis.

Zhang Q, Chen X, He Z, Wu L, Wang K, Sun J, Shen H

pubmed logopapersAug 13 2025
Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging multi-center datasets of cervical MRI images from patients with cervical spondylosis, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system's precision, with the lowest mean average errors (MAE) for the C2-C7 Cobb angle and the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, T2 hyperintensity detection, and Kang grading. Comparative analysis and external validation demonstrate that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.

BSA-Net: Boundary-prioritized spatial adaptive network for efficient left atrial segmentation.

Xu F, Tu W, Feng F, Yang J, Gunawardhana M, Gu Y, Huang J, Zhao J

pubmed logopapersAug 13 2025
Atrial fibrillation, a common cardiac arrhythmia with rapid and irregular atrial electrical activity, requires accurate left atrial segmentation for effective treatment planning. Recently, deep learning methods have gained encouraging success in left atrial segmentation. However, current methodologies critically depend on the assumption of consistently complete centered left atrium as input, which neglects the structural incompleteness and boundary discontinuities arising from random-crop operations during inference. In this paper, we propose BSA-Net, which exploits an adaptive adjustment strategy in both feature position and loss optimization to establish long-range feature relationships and strengthen robust intermediate feature representations in boundary regions. Specifically, we propose a Spatial-adaptive Convolution (SConv) that employs a shuffle operation combined with lightweight convolution to directly establish cross-positional relationships within regions of potential relevance. Moreover, we develop the dual Boundary Prioritized loss, which enhances boundary precision by differentially weighting foreground and background boundaries, thus optimizing complex boundary regions. With the above technologies, the proposed method enjoys a better speed-accuracy trade-off compared to current methods. BSA-Net attains Dice scores of 92.55%, 91.42%, and 84.67% on the LA, Utah, and Waikato datasets, respectively, with a mere 2.16 M parameters-approximately 80% fewer than other contemporary state-of-the-art models. Extensive experimental results on three benchmark datasets have demonstrated that BSA-Net, consistently and significantly outperforms existing state-of-the-art methods.
Page 1 of 99981 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.