Sort by:
Page 1 of 27270 results
Next

Development and validation of deep learning model for detection of obstructive coronary artery disease in patients with acute chest pain: a multi-center study.

Kim JY, Park J, Lee KH, Lee JW, Park J, Kim PK, Han K, Baek SE, Im DJ, Choi BW, Hur J

pubmed logopapersAug 14 2025
This study aimed to develop and validate a deep learning (DL) model to detect obstructive coronary artery disease (CAD, ≥ 50% stenosis) in coronary CT angiography (CCTA) among patients presenting to the emergency department (ED) with acute chest pain. The training dataset included 378 patients with acute chest pain who underwent CCTA (10,060 curved multiplanar reconstruction [MPR] images) from a single-center ED between January 2015 and December 2022. The external validation dataset included 298 patients from 3 ED centers between January 2021 and December 2022. A DL model based on You Only Look Once v4, requires manual preprocessing for curved MPR extraction and was developed using 15 manually preprocessed MPR images per major coronary artery. Model performance was evaluated per artery and per patient. The training dataset included 378 patients (mean age 61.3 ± 12.2 years, 58.2% men); the external dataset included 298 patients (mean age 58.3 ± 13.8 years, 54.6% men). Obstructive CAD prevalence in the external dataset was 27.5% (82/298). The DL model achieved per-artery sensitivity, specificity, positive predictive value, negative predictive value (NPV), and area under the curve (AUC) of 92.7%, 89.9%, 62.6%, 98.5%, and 0.919, respectively; and per-patient values of 93.3%, 80.7%, 67.7%, 96.6%, and 0.871, respectively. The DL model demonstrated high sensitivity and NPV for identifying obstructive CAD in patients with acute chest pain undergoing CCTA, indicating its potential utility in aiding ED physicians in CAD detection.

Artificial Intelligence based fractional flow reserve.

Bednarek A, Gąsior P, Jaguszewski M, Buszman PP, Milewski K, Hawranek M, Gil R, Wojakowski W, Kochman J, Tomaniak M

pubmed logopapersAug 14 2025
Fractional flow reserve (FFR) - a physiological indicator of coronary stenosis significance - has now become a widely used parameter also in the guidance of percutaneous coronary intervention (PCI). Several studies have shown the superiority of FFR compared to visual assessment, contributing to the reduction in clinical endpoints. However, the current approach to FFR assessment requires coronary instrumentation with a dedicated pressure wire and thus increasing invasiveness, cost, and duration of the procedure. Alternative, noninvasive methods of FFR assessment based on computational fluid dynamics are being widely tested; these approaches are generally not fully automated and may sometimes require substantial computational power. Nowadays, one of the most rapidly expanding fields in medicine is the use of artificial intelligence (AI) in therapy optimization, diagnosis, treatment, and risk stratification. AI usage contributes to the development of more sophisticated methods of imaging analysis and allows for the derivation of clinically important parameters in a faster and more accurate way. Over the recent years, AI utility in deriving FFR in a noninvasive manner has been increasingly reported. In this review, we critically summarize current knowledge in the field of AI-derived FFR based on data from computed tomography angiography, invasive angiography, optical coherence tomography, and intravascular ultrasound. Available solutions, possible future directions in optimizing cathlab performance, including the use of mixed reality, as well as current limitations standing behind the wide adoption of these techniques, are overviewed.

Enhancing cardiac MRI reliability at 3 T using motion-adaptive B<sub>0</sub> shimming.

Huang Y, Malagi AV, Li X, Guan X, Yang CC, Huang LT, Long Z, Zepeda J, Zhang X, Yoosefian G, Bi X, Gao C, Shang Y, Binesh N, Lee HL, Li D, Dharmakumar R, Han H, Yang HR

pubmed logopapersAug 14 2025
Magnetic susceptibility differences at the heart-lung interface introduce B<sub>0</sub>-field inhomogeneities that challenge cardiac MRI at high field strengths (≥ 3 T). Although hardware-based shimming has advanced, conventional approaches often neglect dynamic variations in thoracic anatomy caused by cardiac and respiratory motion, leading to residual off-resonance artifacts. This study aims to characterize motion-induced B<sub>0</sub>-field fluctuations in the heart and evaluate a deep learning-enabled motion-adaptive B<sub>0</sub> shimming pipeline to mitigate them. A motion-resolved B<sub>0</sub> mapping sequence was implemented at 3 T to quantify cardiac and respiratory-induced B<sub>0</sub> variations. A motion-adaptive shimming framework was then developed and validated through numerical simulations and human imaging studies. B<sub>0</sub>-field homogeneity and T<sub>2</sub>* mapping accuracy were assessed in multiple breath-hold positions using standard and motion-adaptive shimming. Respiratory motion significantly altered myocardial B<sub>0</sub> fields (p < 0.01), whereas cardiac motion had minimal impact (p = 0.49). Compared with conventional scanner shimming, motion-adaptive B<sub>0</sub> shimming yielded significantly improved field uniformity across both inspiratory (post-shim SD<sub>ratio</sub>: 0.68 ± 0.10 vs. 0.89 ± 0.11; p < 0.05) and expiratory (0.65 ± 0.16 vs. 0.84 ± 0.20; p < 0.05) breath-hold states. Corresponding improvements in myocardial T<sub>2</sub>* map homogeneity were observed, with reduced coefficient of variation (0.44 ± 0.19 vs. 0.39 ± 0.22; 0.59 ± 0.30 vs. 0.46 ± 0.21; both p < 0.01). The proposed motion-adaptive B<sub>0</sub> shimming approach effectively compensates for respiration-induced B<sub>0</sub> fluctuations, enhancing field homogeneity and reducing off-resonance artifacts. This strategy improves the robustness and reproducibility of T<sub>2</sub>* mapping, enabling more reliable high-field cardiac MRI.

BSA-Net: Boundary-prioritized spatial adaptive network for efficient left atrial segmentation.

Xu F, Tu W, Feng F, Yang J, Gunawardhana M, Gu Y, Huang J, Zhao J

pubmed logopapersAug 13 2025
Atrial fibrillation, a common cardiac arrhythmia with rapid and irregular atrial electrical activity, requires accurate left atrial segmentation for effective treatment planning. Recently, deep learning methods have gained encouraging success in left atrial segmentation. However, current methodologies critically depend on the assumption of consistently complete centered left atrium as input, which neglects the structural incompleteness and boundary discontinuities arising from random-crop operations during inference. In this paper, we propose BSA-Net, which exploits an adaptive adjustment strategy in both feature position and loss optimization to establish long-range feature relationships and strengthen robust intermediate feature representations in boundary regions. Specifically, we propose a Spatial-adaptive Convolution (SConv) that employs a shuffle operation combined with lightweight convolution to directly establish cross-positional relationships within regions of potential relevance. Moreover, we develop the dual Boundary Prioritized loss, which enhances boundary precision by differentially weighting foreground and background boundaries, thus optimizing complex boundary regions. With the above technologies, the proposed method enjoys a better speed-accuracy trade-off compared to current methods. BSA-Net attains Dice scores of 92.55%, 91.42%, and 84.67% on the LA, Utah, and Waikato datasets, respectively, with a mere 2.16 M parameters-approximately 80% fewer than other contemporary state-of-the-art models. Extensive experimental results on three benchmark datasets have demonstrated that BSA-Net, consistently and significantly outperforms existing state-of-the-art methods.

SOFA: Deep Learning Framework for Simulating and Optimizing Atrial Fibrillation Ablation

Yunsung Chung, Chanho Lim, Ghassan Bidaoui, Christian Massad, Nassir Marrouche, Jihun Hamm

arxiv logopreprintAug 11 2025
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia often treated with catheter ablation procedures, but procedural outcomes are highly variable. Evaluating and improving ablation efficacy is challenging due to the complex interaction between patient-specific tissue and procedural factors. This paper asks two questions: Can AF recurrence be predicted by simulating the effects of procedural parameters? How should we ablate to reduce AF recurrence? We propose SOFA (Simulating and Optimizing Atrial Fibrillation Ablation), a novel deep-learning framework that addresses these questions. SOFA first simulates the outcome of an ablation strategy by generating a post-ablation image depicting scar formation, conditioned on a patient's pre-ablation LGE-MRI and the specific procedural parameters used (e.g., ablation locations, duration, temperature, power, and force). During this simulation, it predicts AF recurrence risk. Critically, SOFA then introduces an optimization scheme that refines these procedural parameters to minimize the predicted risk. Our method leverages a multi-modal, multi-view generator that processes 2.5D representations of the atrium. Quantitative evaluations show that SOFA accurately synthesizes post-ablation images and that our optimization scheme leads to a 22.18\% reduction in the model-predicted recurrence risk. To the best of our knowledge, SOFA is the first framework to integrate the simulation of procedural effects, recurrence prediction, and parameter optimization, offering a novel tool for personalizing AF ablation.

Stenosis degree and plaque burden differ between the major epicardial coronary arteries supplying ischemic territories.

Kero T, Knuuti J, Bär S, Bax JJ, Saraste A, Maaniitty T

pubmed logopapersAug 9 2025
It is unclear whether coronary artery stenosis, plaque burden, and composition differ between major epicardial arteries supplying ischemic myocardial territories. We studied 837 symptomatic patients undergoing coronary computed tomography angiography (CTA) and <sup>15</sup>O-water PET myocardial perfusion imaging for suspected obstructive coronary artery disease. Coronary CTA was analyzed using Artificial Intelligence-Guided Quantitative Computed Tomography (AI-QCT) to assess stenosis and atherosclerotic plaque characteristics. Myocardial ischemia was defined by regional PET perfusion in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territories. Among arteries supplying ischemic territories, the LAD exhibited significantly higher stenosis and both absolute and normalized plaque volumes compared to LCX and RCA (p<0.001 for all). Multivariable logistic regression showed diameter stenosis (p=0.001-0.015), percent atheroma volume (PAV; p<0.001), and percent non-calcified plaque volume (p=0.001-0.017) were associated with ischemia across all three arteries. Percent calcified plaque volume was associated with ischemia only in the RCA (p=0.001). The degree of stenosis and atherosclerotic burden are significantly higher in LAD as compared to LCX and RCA, both in epicardial coronary arteries supplying non-ischemic or ischemic myocardial territories. In all the three main coronary arteries both luminal narrowing and plaque burden are independent predictors of ischemia, where the plaque burden is mainly driven by non-calcified plaque. However, many vessels supplying ischemic territories have relatively low stenosis degree and plaque burden, especially in the LCx and RCA, limiting the ability of diameter stenosis and PAV to predict myocardial ischemia.

LWT-ARTERY-LABEL: A Lightweight Framework for Automated Coronary Artery Identification

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.

Automated coronary artery segmentation / tissue characterization and detection of lipid-rich plaque: An integrated backscatter intravascular ultrasound study.

Masuda Y, Takeshita R, Tsujimoto A, Sahashi Y, Watanabe T, Fukuoka D, Hara T, Kanamori H, Okura H

pubmed logopapersAug 8 2025
Intravascular ultrasound (IVUS)-based tissue characterization has been used to detect vulnerable plaque or lipid-rich plaque (LRP). Recently, advancements in artificial intelligence (AI) technology have enabled automated coronary arterial plaque segmentation and tissue characterization. The purpose of this study was to evaluate the feasibility and diagnostic accuracy of a deep learning model for plaque segmentation, tissue characterization and identification of LRP. A total of 1,098 IVUS images from 67 patients who underwent IVUS-guided percutaneous coronary intervention were selected for the training group, while 1,100 IVUS images from 100 vessels (88 patients) were used for the validation group. A 7-layer U-Net ++ was applied for automated coronary artery segmentation and tissue characterization. Segmentation and quantification of the external elastic membrane (EEM), lumen and guidewire artifact were performed and compared with manual measurements. Plaque tissue characterization was conducted using integrated backscatter (IB)-IVUS as the gold standard. LRP was defined as %lipid area of ≥65 %. The deep learning model accurately segmented EEM and lumen. AI-predicted %lipid area (R = 0.90, P < 0.001), % fibrosis area (R = 0.89, P < 0.001), %dense fibrosis area (R = 0.81, P < 0.001) and % calcification area (R = 0.89, P < 0.001), showed strong correlation with IB-IVUS measurements. The model predicted LRP with a sensitivity of 62 %, specificity of 94 %, positive predictive value of 69 %, negative predictive value of 92 % and an area under the receiver operating characteristic curve of 0.919 (95 % CI:0.902-0.934), respectively. The deep-learning model demonstrated accurate automatic segmentation and tissue characterization of human coronary arteries, showing promise for identifying LRP.

Can Diffusion Models Bridge the Domain Gap in Cardiac MR Imaging?

Xin Ci Wong, Duygu Sarikaya, Kieran Zucker, Marc De Kamps, Nishant Ravikumar

arxiv logopreprintAug 8 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.

Artificial Intelligence for the Detection of Fetal Ultrasound Findings Concerning for Major Congenital Heart Defects.

Zelop CM, Lam-Rachlin J, Arunamata A, Punn R, Behera SK, Lachaud M, David N, DeVore GR, Rebarber A, Fox NS, Gayanilo M, Garmel S, Boukobza P, Uzan P, Joly H, Girardot R, Cohen L, Stos B, De Boisredon M, Askinazi E, Thorey V, Gardella C, Levy M, Geiger M

pubmed logopapersAug 7 2025
To evaluate the performance of an artificial intelligence (AI)-based software to identify second-trimester fetal ultrasound examinations suspicious for congenital heart defects. The software analyzes all grayscale two-dimensional ultrasound cine clips of an examination to evaluate eight morphologic findings associated with severe congenital heart defects. A data set of 877 examinations was retrospectively collected from 11 centers. The presence of suspicious findings was determined by a panel of expert pediatric cardiologists, who determined that 311 examinations had at least one of the eight suspicious findings. The AI software processed each examination, labeling each finding as present, absent, or inconclusive. Of the 280 examinations with known severe congenital heart defects, 278 (sensitivity 0.993, 95% CI, 0.974-0.998) had at least one of the eight suspicious findings present as determined by the fetal cardiologists, highlighting the relevance of these eight findings. We then evaluated the performance of the AI software, which identified at least one finding as present in 271 examinations, that all eight findings were absent in five examinations, and was inconclusive in four of the 280 examinations with severe congenital heart defects, yielding a sensitivity of 0.968 (95% CI, 0.940-0.983) for severe congenital heart defects. When comparing the AI to the determination of findings by fetal cardiologists, the detection of any finding by the AI had a sensitivity of 0.987 (95% CI, 0.967-0.995) and a specificity of 0.977 (95% CI, 0.961-0.986) after exclusion of inconclusive examinations. The AI rendered a decision for any finding (either present or absent) in 98.7% of examinations. The AI-based software demonstrated high accuracy in identification of suspicious findings associated with severe congenital heart defects, yielding a high sensitivity for detecting severe congenital heart defects. These results show that AI has potential to improve antenatal congenital heart defect detection.
Page 1 of 27270 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.