Sort by:
Page 1 of 32311 results
Next

Application of Machine Learning in the Diagnosis and Prognosis of Mild Traumatic Brain Injury Using Diffusion Tensor Imaging: A Systematic Review.

Saludar CJA, Tayebi M, Kwon E, McGeown J, Schierding W, Wang A, Fernandez J, Holdsworth S, Shim V

pubmed logopapersSep 30 2025
Traumatic Brain Injury (TBI) is a global health concern, with mild TBI (mTBI) being the most common form. Despite its prevalence, accurately diagnosing mTBI remains a significant challenge. While advanced neuroimaging techniques like diffusion tensor imaging (DTI) offer promise for more robust diagnosis, their clinical application is limited by inconsistent and heterogeneous post-injury findings. Recently, machine learning (ML) techniques, utilizing DTI metrics as features, have shown increasing utility in mTBI research. This approach helps identify distinct between-group features, paving the way for more precise and efficient diagnostic and prognostic tools. This review aims to analyze studies employing ML techniques to assess changes in DTI metrics after mTBI. Systematic review. We conducted a systematic review, adhering to PRISMA guidelines, on the application of ML with DTI for mTBI diagnosis and prognosis on human subjects. This review identified 36 articles. N/A. Study quality was assessed using the Modified QualSyst Assessment Tool. N/A. The review found ML techniques using DTI Metrics either alone or in combination with other modalities (i.e., structural MRI, functional MRI, clinical scores, or demographics) can effectively classify mTBI patients from controls. These approaches have also demonstrated potential in classifying mTBI patients according to the degree of recovery and symptom severity. In addition, these ML models showed strong predictive power toward cognitive scores and brain structural decline, as quantified by brain-predicted age difference. Larger, externally validated studies are needed to develop robust models for the diagnosis and prognosis of mTBI, using imaging biomarkers (including DTI) in conjunction with non-imaging, on-field, or clinical data. Despite the high predictive performance of ML algorithms, the clinical application remains distant, likely due to the small sample size of studies and lack of external validation, which raises concerns about overfitting. 5. Stage 1.

Integrating big data and artificial intelligence to predict progression in multiple sclerosis: challenges and the path forward.

Khan H, Aerts S, Vermeulen I, Woodruff HC, Lambin P, Peeters LM

pubmed logopapersSep 29 2025
Multiple sclerosis (MS) remains a complex and costly neurological condition characterised by progressive disability, making early detection and accurate prognosis of disease progression imperative. While artificial intelligence (AI) combined with big data promises transformative advances in personalised MS care, integration of multimodal, real-world datasets, including clinical records, magnetic resonance imaging (MRI), and digital biomarkers, remains limited. This perspective paper identifies a critical gap between technical innovation and clinical implementation, driven by methodological constraints, evolving regulatory frameworks, and ethical concerns related to bias, privacy, and equity. We explore this gap through three interconnected lenses: the underuse of integrated real-world data, the barriers posed by regulation and ethics, and emerging solutions. Promising strategies such as federated learning, regulatory initiatives like DARWIN-EU and the European Health Data Space, and patient-led frameworks including PROMS and CLAIMS, offer structured pathways forward. Additionally, we highlight the growing relevance of foundation models for interpreting complex MS data and supporting clinical decision-making. We advocate for harmonised data infrastructures, patient-centred design, explainable AI, and real-world validation as core pillars for future implementation. By aligning technical, regulatory, and ethical domains, stakeholders can unlock the full potential of AI to enhance prognosis, personalise care, and improve outcomes for people with MS.

Precision medicine in prostate cancer: individualized treatment through radiomics, genomics, and biomarkers.

Min K, Lin Q, Qiu D

pubmed logopapersSep 29 2025
Prostate cancer (PCa) is one of the most common malignancies threatening men's health globally. A comprehensive and integrated approach is essential for its early screening, diagnosis, risk stratification, treatment guidance, and efficacy assessment. Radiomics, leveraging multi-parametric magnetic resonance imaging (mpMRI) and positron emission tomography/computed tomography (PET/CT), has demonstrated significant clinical value in the non-invasive diagnosis, aggressiveness assessment, and prognosis prediction of PCa, with substantial potential when combined with artificial intelligence. In genomics, mutations or deletions in genes such as TMPRSS2-ERG, PTEN, RB1, TP53, and DNA damage repair genes (e.g., BRCA1/2) are closely associated with disease development and progression, holding profound implications for diagnosis, treatment, and prognosis. Concurrently, biomarkers like prostate-specific antigen (PSA), novel urinary markers (e.g., PCA3), and circulating tumor cells (CTCs) are widely utilized in PCa research and management. Integrating these technologies into personalized treatment plans and the broader framework of precision medicine allows for an in-depth exploration of the relationship between specific biomarkers and disease pathogenesis. This review summarizes the current research on radiomics, genomics, and biomarkers in PCa, and discusses their future potential and applications in advancing individualized patient care.

Democratizing AI in Healthcare with Open Medical Inference (OMI): Protocols, Data Exchange, and AI Integration.

Pelka O, Sigle S, Werner P, Schweizer ST, Iancu A, Scherer L, Kamzol NA, Eil JH, Apfelbacher T, Seletkov D, Susetzky T, May MS, Bucher AM, Fegeler C, Boeker M, Braren R, Prokosch HU, Nensa F

pubmed logopapersSep 29 2025
The integration of artificial intelligence (AI) into healthcare is transforming clinical decision-making, patient outcomes, and workflows. AI inference, applying trained models to new data, is central to this evolution, with cloud-based infrastructures enabling scalable AI deployment. The Open Medical Inference (OMI) platform democratizes AI access through open protocols and standardized data formats for seamless, interoperable healthcare data exchange. By integrating standards like FHIR and DICOMweb, OMI ensures interoperability between healthcare institutions and AI services while fostering ethical AI use through a governance framework addressing privacy, transparency, and fairness.OMI's implementation is structured into work packages, each addressing technical and ethical aspects. These include expanding the Medical Informatics Initiative (MII) Core Dataset for medical imaging, developing infrastructure for AI inference, and creating an open-source DICOMweb adapter for legacy systems. Standardized data formats ensure interoperability, while the AI Governance Framework promotes trust and responsible AI use.The project aims to establish an interoperable AI network across healthcare institutions, connecting existing infrastructures and AI services to enhance clinical outcomes. · OMI develops open protocols and standardized data formats for seamless healthcare data exchange.. · Integration with FHIR and DICOMweb ensures interoperability between healthcare systems and AI services.. · A governance framework addresses privacy, transparency, and fairness in AI usage.. · Work packages focus on expanding datasets, creating infrastructure, and enabling legacy system integration.. · The project aims to create a scalable, secure, and interoperable AI network in healthcare.. · Pelka O, Sigle S, Werner P et al. Democratizing AI in Healthcare with Open Medical Inference (OMI): Protocols, Data Exchange, and AI Integration. Rofo 2025; DOI 10.1055/a-2651-6653.

Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination.

Wang YY, Liu B, Wang JH

pubmed logopapersSep 28 2025
Gastrointestinal (GI) diseases, including gastric and colorectal cancers, significantly impact global health, necessitating accurate and efficient diagnostic methods. Endoscopic examination is the primary diagnostic tool; however, its accuracy is limited by operator dependency and interobserver variability. Advancements in deep learning, particularly convolutional neural networks (CNNs), show great potential for enhancing GI disease detection and classification. This review explores the application of CNNs in endoscopic imaging, focusing on polyp and tumor detection, disease classification, endoscopic ultrasound, and capsule endoscopy analysis. We discuss the performance of CNN models with traditional diagnostic methods, highlighting their advantages in accuracy and real-time decision support. Despite promising results, challenges remain, including data availability, model interpretability, and clinical integration. Future directions include improving model generalization, enhancing explainability, and conducting large-scale clinical trials. With continued advancements, CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection, reducing diagnostic errors, and improving patient outcomes.

[Advances in the application of artificial intelligence for pulmonary function assessment based on chest imaging in thoracic surgery].

Huang LC, Liang HR, Jiang Y, Lin YC, He JX

pubmed logopapersSep 27 2025
In recent years, lung function assessment has attracted increasing attention in the perioperative management of thoracic surgery. However, traditional pulmonary function testing methods remain limited in clinical practice due to high equipment requirements and complex procedures. With the rapid development of artificial intelligence (AI) technology, lung function assessment based on multimodal chest imaging (such as X-rays, CT, and MRI) has become a new research focus. Through deep learning algorithms, AI models can accurately extract imaging features of patients and have made significant progress in quantitative analysis of pulmonary ventilation, evaluation of diffusion capacity, measurement of lung volumes, and prediction of lung function decline. Previous studies have demonstrated that AI models perform well in predicting key indicators such as forced expiratory volume in one second (FEV1), diffusing capacity for carbon monoxide (DLCO), and total lung capacity (TLC). Despite these promising prospects, challenges remain in clinical translation, including insufficient data standardization, limited model interpretability, and the lack of prediction models for postoperative complications. In the future, greater emphasis should be placed on multicenter collaboration, the construction of high-quality databases, the promotion of multimodal data integration, and clinical validation to further enhance the application value of AI technology in precision decision-making for thoracic surgery.

Beyond tractography in brain connectivity mapping with dMRI morphometry and functional networks.

Wang JT, Lin CP, Liu HM, Pierpaoli C, Lo CZ

pubmed logopapersSep 27 2025
Traditional brain connectivity studies have focused mainly on structural connectivity, often relying on tractography with diffusion MRI (dMRI) to reconstruct white matter pathways. In parallel, studies of functional connectivity have examined correlations in brain activity using fMRI. However, emerging methodologies are advancing our understanding of brain networks. Here we explore advanced connectivity approaches beyond conventional tractography, focusing on dMRI morphometry and the integration of structural and functional connectivity analysis. dMRI morphometry enables quantitative assessment of white matter pathway volumes through statistical comparison with normative populations, while functional connectivity reveals network organization that is not restricted to direct anatomical connections. More recently, approaches that combine diffusion tensor imaging (DTI) with functional correlation tensor (FCT) analysis have been introduced, and these complementary methods provide new perspectives into brain structure-function relationships. Together, such approaches have important implications for neurodevelopmental and neurological disorders as well as brain plasticity. The integration of these methods with artificial intelligence techniques have the potential to support both basic neuroscience research and clinical applications.

Artificial Intelligence in Ventricular Arrhythmias and Sudden Cardiac Death: A Guide for Clinicians.

Antoun I, Li X, Abdelrazik A, Eldesouky M, Thu KM, Ibrahim M, Dhutia H, Somani R, Ng GA

pubmed logopapersSep 27 2025
Sudden cardiac death (SCD) from ventricular arrhythmias (VAs) remains a leading cause of mortality worldwide. Traditional risk stratification, primarily based on left ventricular ejection fraction (LVEF) and other coarse metrics, often fails to identify a large subset of patients at risk and frequently leads to unnecessary device implantations. Advances in artificial intelligence (AI) offer new strategies to improve both long-term SCD risk prediction and near-term VAs forecasting. In this review, we discuss how AI algorithms applied to the 12-lead electrocardiogram (ECG) can identify subtle risk markers in conditions such as hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and coronary artery disease (CAD), often outperforming conventional risk models. We also explore the integration of AI with cardiac imaging, such as scar quantification on cardiac magnetic resonance (CMR) and fibrosis mapping, to enhance the identification of the arrhythmogenic substrate. Furthermore, we investigate the application of data from implantable cardioverter-defibrillators (ICDs) and wearable devices to predict ventricular tachycardia (VT) or ventricular fibrillation (VF) events before they occur, thereby advancing care toward real-time prevention. Amid these innovations, we address the medicolegal and ethical implications of AI-driven automated alerts in arrhythmia care, highlighting when clinicians can trust AI predictions. Future directions include multimodal AI fusion to personalise SCD risk assessment, as well as AI-guided VT ablation planning through imaging-based digital heart models. This review provides a comprehensive overview for general medical readers, focusing on peer-reviewed advances globally in the emerging intersection of AI, VAs, and SCD prevention.

Ultra-low-field MRI: a David versus Goliath challenge in modern imaging.

Gagliardo C, Feraco P, Contrino E, D'Angelo C, Geraci L, Salvaggio G, Gagliardo A, La Grutta L, Midiri M, Marrale M

pubmed logopapersSep 26 2025
Ultra-low-field magnetic resonance imaging (ULF-MRI), operating below 0.2 Tesla, is gaining renewed interest as a re-emerging diagnostic modality in a field dominated by high- and ultra-high-field systems. Recent advances in magnet design, RF coils, pulse sequences, and AI-based reconstruction have significantly enhanced image quality, mitigating traditional limitations such as low signal- and contrast-to-noise ratio and reduced spatial resolution. ULF-MRI offers distinct advantages: reduced susceptibility artifacts, safer imaging in patients with metallic implants, low power consumption, and true portability for point-of-care use. This narrative review synthesizes the physical foundations, technological advances, and emerging clinical applications of ULF-MRI. A focused literature search across PubMed, Scopus, IEEE Xplore, and Google Scholar was conducted up to August 11, 2025, using combined keywords targeting hardware, software, and clinical domains. Inclusion emphasized scientific rigor and thematic relevance. A comparative analysis with other imaging modalities highlights the specific niche ULF-MRI occupies within the broader diagnostic landscape. Future directions and challenges for clinical translation are explored. In a world increasingly polarized between the push for ultra-high-field excellence and the need for accessible imaging, ULF-MRI embodies a modern "David versus Goliath" theme, offering a sustainable, democratizing force capable of expanding MRI access to anyone, anywhere.

[Advances in the application of multimodal image fusion technique in stomatology].

Ma TY, Zhu N, Zhang Y

pubmed logopapersSep 26 2025
Within the treatment process of modern stomatology, obtaining exquisite preoperative information is the key to accurate intraoperative planning with implementation and prognostic judgment. However, traditional single mode image has obvious shortcomings, such as "monotonous contents" and "unstable measurement accuracy", which could hardly meet the diversified needs of oral patients. Multimodal medical image fusion (MMIF) technique has been introduced into the studies of stomatology in the 1990s, aiming at realizing personalized patients' data analysis through multiple fusion algorithms, which combines the advantages of multimodal medical images while laying a stable foundation for new treatment technologies. Recently artificial intelligence (AI) has significantly increased the precision and efficiency of MMIF's registration: advanced algorithms and networks have confirmed the great compatibility between AI and MMIF. This article systematically reviews the development history of the multimodal image fusion technique and its current application in stomatology, while analyzing technological progresses within the domain combined with the background of AI's rapid development, in order to provide new ideas for achieving new advancements within the field of stomatology.
Page 1 of 32311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.