Sort by:
Page 1 of 17170 results
Next

MMDental - A multimodal dataset of tooth CBCT images with expert medical records.

Wang C, Zhang Y, Wu C, Liu J, Wu L, Wang Y, Huang X, Feng X, Wang Y

pubmed logopapersJul 9 2025
In the rapidly evolving field of dental intelligent healthcare, where Artificial Intelligence (AI) plays a pivotal role, the demand for multimodal datasets is critical. Existing public datasets are primarily composed of single-modal data, predominantly dental radiographs or scans, which limits the development of AI-driven applications for intelligent dental treatment. In this paper, we collect a MultiModal Dental (MMDental) dataset to address this gap. MMDental comprises data from 660 patients, including 3D Cone-beam Computed Tomography (CBCT) images and corresponding detailed expert medical records with initial diagnoses and follow-up documentation. All CBCT scans are conducted under the guidance of professional physicians, and all patient records are reviewed by senior doctors. To the best of our knowledge, this is the first and largest dataset containing 3D CBCT images of teeth with corresponding medical records. Furthermore, we provide a comprehensive analysis of the dataset by exploring patient demographics, prevalence of various dental conditions, and the disease distribution across age groups. We believe this work will be beneficial for further advancements in dental intelligent treatment.

AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

Carriero S, Canella R, Cicchetti F, Angileri A, Bruno A, Biondetti P, Colciago RR, D'Antonio A, Della Pepa G, Grassi F, Granata V, Lanza C, Santicchia S, Miceli A, Piras A, Salvestrini V, Santo G, Pesapane F, Barile A, Carrafiello G, Giovagnoni A

pubmed logopapersJul 9 2025
The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

[The standardization and digitalization and intelligentization represent the future development direction of hip arthroscopy diagnosis and treatment technology].

Li CB, Zhang J, Wang L, Wang YT, Kang XQ, Wang MX

pubmed logopapersJul 8 2025
In recent years, hip arthroscopy has made great progress and has been extended to the treatment of intra-articular or periarticular diseases. However, the complex structure of the hip joint, high technical operation requirements and relatively long learning curve have hindered the popularization and development of hip arthroscopy in China. Therefore, on the one hand, it is necessary to promote the research and training of standardized techniques for the diagnosis of hip disease and the treatment of arthroscopic surgery, so as to improve the safety, effectiveness and popularization of the technology. On the other hand, our organization proactively leverages cutting-edge digitalization and intelligentization technologies, including medical image digitalization, medical big data analytics, artificial intelligence, surgical navigation and robotic control, virtual reality, telemedicine, and 5G communication technology. We conduct a range of innovative research and development initiatives such as intelligent-assisted diagnosis of hip diseases, digital preoperative planning, surgical intelligent navigation and robotic procedures, and smart rehabilitation solutions. These efforts aim to facilitate a digitalization and intelligentization leap in technology and continuously enhance the precision of diagnosis and treatment. In conclusion, standardization promotes the homogenization of diagnosis and treatment, while digitalization and intelligentization facilitate the precision of operations. The synergy of the two lays the foundation for personalized diagnosis and treatment and continuous innovation, ultimately driving the rapid development of hip arthroscopy technology.

Deep Learning Approach for Biomedical Image Classification.

Doshi RV, Badhiye SS, Pinjarkar L

pubmed logopapersJul 8 2025
Biomedical image classification is of paramount importance in enhancing diagnostic precision and improving patient outcomes across diverse medical disciplines. In recent years, the advent of deep learning methodologies has significantly transformed this domain by facilitating notable advancements in image analysis and classification endeavors. This paper provides a thorough overview of the application of deep learning techniques in biomedical image classification, encompassing various types of healthcare data, including medical images derived from modalities such as mammography, histopathology, and radiology. A detailed discourse on deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and advanced models such as generative adversarial networks (GANs), is presented. Additionally, we delineate the distinctions between supervised, unsupervised, and reinforcement learning approaches, along with their respective roles within the context of biomedical imaging. This study systematically investigates 50 deep learning methodologies employed in the healthcare sector, elucidating their effectiveness in various tasks, including disease detection, image segmentation, and classification. It particularly emphasizes models that have been trained on publicly available datasets, thereby highlighting the significant role of open-access data in fostering advancements in AI-driven healthcare innovations. Furthermore, this review accentuates the transformative potential of deep learning in the realm of biomedical image analysis and delineates potential avenues for future research within this rapidly evolving field.

Foundation models for radiology: fundamentals, applications, opportunities, challenges, risks, and prospects.

Akinci D'Antonoli T, Bluethgen C, Cuocolo R, Klontzas ME, Ponsiglione A, Kocak B

pubmed logopapersJul 8 2025
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-training and efficient fine-tuning, FMs can support diverse applications, including image interpretation, report generation, integrative diagnostics combining imaging with clinical/laboratory data, and synthetic data creation, holding significant promise for advancements in precision medicine. However, clinical translation of FMs faces several substantial challenges. Key concerns include the inherent opacity of model decision-making processes, environmental and social sustainability issues, risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent stochasticity and the risk of hallucination. This international collaborative effort provides a comprehensive overview of the fundamentals, applications, opportunities, challenges, and prospects of FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.

Integrating Machine Learning into Myositis Research: a Systematic Review.

Juarez-Gomez C, Aguilar-Vazquez A, Gonzalez-Gauna E, Garcia-Ordoñez GP, Martin-Marquez BT, Gomez-Rios CA, Becerra-Jimenez J, Gaspar-Ruiz A, Vazquez-Del Mercado M

pubmed logopapersJul 8 2025
Idiopathic inflammatory myopathies (IIM) are a group of autoimmune rheumatic diseases characterized by proximal muscle weakness and extra muscular manifestations. Since 1975, these IIM have been classified into different clinical phenotypes. Each clinical phenotype is associated with a better or worse prognosis and a particular physiopathology. Machine learning (ML) is a fascinating field of knowledge with worldwide applications in different fields. In IIM, ML is an emerging tool assessed in very specific clinical contexts as a complementary tool for research purposes, including transcriptome profiles in muscle biopsies, differential diagnosis using magnetic resonance imaging (MRI), and ultrasound (US). With the cancer-associated risk and predisposing factors for interstitial lung disease (ILD) development, this systematic review evaluates 23 original studies using supervised learning models, including logistic regression (LR), random forest (RF), support vector machines (SVM), and convolutional neural networks (CNN), with performance assessed primarily through the area under the curve coupled with the receiver operating characteristic (AUC-ROC).

Post-hoc eXplainable AI methods for analyzing medical images of gliomas (- A review for clinical applications).

Ayaz H, Sümer-Arpak E, Ozturk-Isik E, Booth TC, Tormey D, McLoughlin I, Unnikrishnan S

pubmed logopapersJul 8 2025
Deep learning (DL) has shown promise in glioma imaging tasks using magnetic resonance imaging (MRI) and histopathology images, yet their complexity demands greater transparency in artificial intelligence (AI) systems. This is noticeable when users must understand the model output for a clinical application. In this systematic review, 65 post-hoc eXplainable AI (XAI), or interpretable AI studies, have been reviewed that provide an understanding of why a system generated a given output for tasks related to glioma imaging. A framework of post-hoc XAI methods, such as Gradient-based XAI (G-XAI) and Perturbation-based XAI (P-XAI), is introduced to evaluate deep models and explain their application in gliomas. The papers on XAI techniques in gliomas are surveyed and categorized by their specific aims such as grading, genetic biomarker detection, localization, intra-tumoral heterogeneity assessment, and survival analysis, and their XAI approach. This review highlights the growing integration of XAI in glioma imaging, demonstrating their role in bridging AI decision-making and medical diagnostics. The co-occurrence analysis emphasizes their role in enhancing model transparency and trust and guiding future research toward more reliable clinical applications. Finally, the current challenges associated with DL and XAI approaches and their clinical integration are discussed with an outlook on future opportunities from clinical users' perspectives and upcoming trends in XAI.

Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.

East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP

pubmed logopapersJul 7 2025
The integration of artificial intelligence (AI) with point-of-care ultrasound (POCUS) is transforming cardiovascular diagnostics by enhancing image acquisition, interpretation, and workflow efficiency. These advancements hold promise in expanding access to cardiovascular imaging in resource-limited settings and enabling early disease detection through screening applications. This review explores the opportunities and challenges of AI-enabled POCUS as it reshapes the landscape of cardiovascular imaging. AI-enabled systems can reduce operator dependency, improve image quality, and support clinicians-both novice and experienced-in capturing diagnostically valuable images, ultimately promoting consistency across diverse clinical environments. However, widespread adoption faces significant challenges, including concerns around algorithm generalizability, bias, explainability, clinician trust, and data privacy. Addressing these issues through standardized development, ethical oversight, and clinician-AI collaboration will be critical to safe and effective implementation. Looking ahead, emerging innovations-such as autonomous scanning, real-time predictive analytics, tele-ultrasound, and patient-performed imaging-underscore the transformative potential of AI-enabled POCUS in reshaping cardiovascular care and advancing equitable healthcare delivery worldwide.

Potential Time and Recall Benefits for Adaptive AI-Based Breast Cancer MRI Screening.

Balkenende L, Ferm J, van Veldhuizen V, Brunekreef J, Teuwen J, Mann RM

pubmed logopapersJul 7 2025
Abbreviated breast MRI protocols are advocated for breast screening as they limit acquisition duration and increase resource availability. However, radiologists' specificity may be slightly lowered when only such short protocols are evaluated. An adaptive approach, where a full protocol is performed only when abnormalities are detected by artificial intelligence (AI)-based models in the abbreviated protocol, might improve and speed up MRI screening. This study explores the potential benefits of such an approach. To assess the potential impact of adaptive breast MRI scanning based on AI detection of malignancies. Mathematical model. Breast cancer screening protocols. Theoretical upper and lower limits on expected protocol duration and recall rate were determined for the adaptive approach, and the influence of the AI model and radiologists' performance metrics on these limits was assessed, under the assumption that any finding on the abbreviated protocol would, in an ideal follow-up scenario, prompt a second MRI with the full protocol. Estimated most likely scenario. Theoretical limits for the proposed adaptive AI-based MRI breast cancer screening showed that the recall rates of the abbreviated and full screening protocols always constrained the recall rate. These abbreviated and full protocols did not fully constrain the expected protocol duration, and an adaptive protocol's expected duration could thus be shorter than the abbreviated protocol duration. Specificity, either from AI models or radiologists, has the largest effect on the theoretical limits. In the most likely scenario, the adaptive protocol achieved an expected protocol duration reduction of ~47%-60% compared with the full protocol. The proposed adaptive approach may offer a reduction in expected protocol duration compared with the use of the full protocol alone, and a lower recall rate relative to an abbreviated-only approach could be achieved. Optimal performance was observed when AI models emulated radiologists' decision-making behavior, rather than focusing solely on near-perfect malignancy detection. Not applicable. Stage 6.

Emerging Frameworks for Objective Task-based Evaluation of Quantitative Medical Imaging Methods

Yan Liu, Huitian Xia, Nancy A. Obuchowski, Richard Laforest, Arman Rahmim, Barry A. Siegel, Abhinav K. Jha

arxiv logopreprintJul 7 2025
Quantitative imaging (QI) is demonstrating strong promise across multiple clinical applications. For clinical translation of QI methods, objective evaluation on clinically relevant tasks is essential. To address this need, multiple evaluation strategies are being developed. In this paper, based on previous literature, we outline four emerging frameworks to perform evaluation studies of QI methods. We first discuss the use of virtual imaging trials (VITs) to evaluate QI methods. Next, we outline a no-gold-standard evaluation framework to clinically evaluate QI methods without ground truth. Third, a framework to evaluate QI methods for joint detection and quantification tasks is outlined. Finally, we outline a framework to evaluate QI methods that output multi-dimensional parameters, such as radiomic features. We review these frameworks, discussing their utilities and limitations. Further, we examine future research areas in evaluation of QI methods. Given the recent advancements in PET, including long axial field-of-view scanners and the development of artificial-intelligence algorithms, we present these frameworks in the context of PET.
Page 1 of 17170 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.