RadAI Slice is your weekly intelligence briefing on the most critical developments at the intersection of radiology and artificial intelligence. Stop searching. Start leading.
Each issue is precisely structured to give you exactly what you need. No fluff, just facts and forward-looking insights.
AI is set to revolutionize diagnostic imaging and personalized medicine while highlighting the enduring importance of human empathy and accessibility.
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
EMBL launches a comprehensive AI strategy, supported by the Hector Foundation, to advance imaging and life sciences research.
The Radiological Society of North America has actively promoted artificial intelligence (AI) challenges since 2017. Algorithms emerging from the recent RSNA 2022 Cervical Spine Fracture Detection Challenge demonstrated state-of-the-art performance in the competition's data set, surpassing results from prior publications. However, their performance in real-world clinical practice is not known. As an initial step toward the goal of assessing feasibility of these models in clinical practice, we conducted a generalizability test by using one of the leading algorithms of the competition. The deep learning algorithm was selected due to its performance, portability, and ease of use, and installed locally. One hundred examinations (50 consecutive cervical spine CT scans with at least 1 fracture present and 50 consecutive negative CT scans) from a level 1 trauma center not represented in the competition data set were processed at 6.4 seconds per examination. Ground truth was established based on the radiology report with retrospective confirmation of positive fracture cases. Sensitivity, specificity, F1 score, and area under the curve were calculated. The external validation data set comprised older patients in comparison to the competition set (53.5 ± 21.8 years versus 58 ± 22.0, respectively; <i>P</i> < .05). Sensitivity and specificity were 86% and 70% in the external validation group and 85% and 94% in the competition group, respectively. Fractures misclassified by the convolutional neural networks frequently had features of advanced degenerative disease, subtle nondisplaced fractures not easily identified on the axial plane, and malalignment. The model performed with a similar sensitivity on the test and external data set, suggesting that such a tool could be potentially generalizable as a triage tool in the emergency setting. Discordant factors such as age-associated comorbidities may affect accuracy and specificity of AI models when used in certain populations. Further research should be encouraged to help elucidate the potential contributions and pitfalls of these algorithms in supporting clinical care.
The primary goal in neuro-oncology is the maximally safe resection of high-grade glioma (HGG). A more extensive resection improves both overall and disease-free survival, while a complication-free surgery enables better tolerance to adjuvant therapies such as chemotherapy and radiotherapy. Techniques such as 5-aminolevulinic acid (5-ALA) fluorescence and intraoperative ultrasound (ioUS) are valuable for safe resection and cost-effective. However, the benefits of combining these techniques remain undocumented. The aim of this study was to investigate outcomes when combining 5-ALA and ioUS. From January 2019 to January 2024, 72 patients (mean age 62.2 years, 62.5% male) underwent HGG resection at a single hospital. Tumor histology included glioblastoma (90.3%), grade IV astrocytoma (4.1%), grade III astrocytoma (2.8%), and grade III oligodendroglioma (2.8%). Tumor resection was performed under natural light, followed by using 5-ALA and ioUS to detect residual tumor. Biopsies from the surgical bed were analyzed for tumor presence and categorized based on 5-ALA and ioUS results. Results of 5-ALA and ioUS were classified into positive, weak/doubtful, or negative. Histological findings of the biopsies were categorized into solid tumor, infiltration, or no tumor. Sensitivity, specificity, and predictive values for both techniques, separately and combined, were calculated. A machine learning algorithm (HGGPredictor) was developed to predict tumor presence in biopsies. The overall sensitivities of 5-ALA and ioUS were 84.9% and 76%, with specificities of 57.8% and 84.5%, respectively. The combination of both methods in a positive/positive scenario yielded the highest performance, achieving a sensitivity of 91% and specificity of 86%. The positive/doubtful combination followed, with sensitivity of 67.9% and specificity of 95.2%. Area under the curve analysis indicated superior performance when both techniques were combined, in comparison to each method used individually. Additionally, the HGGPredictor tool effectively estimated the quantity of tumor cells in surgical margins. Combining 5-ALA and ioUS enhanced diagnostic accuracy for HGG resection, suggesting a new surgical standard. An intraoperative predictive algorithm could further automate decision-making.
In groups of patients suffering from schizophrenia (SZ), redox dysregulation was reported in both peripheral fluids and brain. It has been hypothesized that such dysregulation, including alterations of the glutathione (GSH) cycle could participate in the brain white matter (WM) abnormalities in SZ due to the oligodendrocytes susceptibility to oxidative stress. In this study we aim to assess the differences between 82 schizophrenia patients (PT) and 86 healthy controls (HC) in GSH-redox peripheral blood markers: GSH peroxidase (GPx), reductase (GR) enzymatic activities and their ratio (GPx/GR-ratio), evaluating the hypotheses that alterations in the homeostasis of the systemic GSH cycle may be associated with pathological mechanisms in the brain WM in PT. To do so, we employ the advanced diffusion MRI methods: Diffusion Kurtosis Imaging (DKI) and White Matter Tract Integrity-Watson (WMTI-W), which provide excellent sensitivity to demyelination and neuroinflammation. We show that GPx levels are higher (p=0.00041) in female control participants and decrease with aging (p=0.026). We find differences between PT and HC in the association of GR and mean kurtosis (MK, p<0.0001). Namely, lower MK was associated with higher blood GR activity in HC, but not in PT, suggesting that high GR activity (a hallmark of reductive stress) in HC was linked to changes in myelin integrity. However, GSH-redox peripheral blood markers did not explain the WM anomalies detected in PT, or the design of the present study could not detect subtle phenomenon, if present.
Leo Cancer Care
Marie is a computed tomography (CT) X-Ray system designed to capture detailed cross-sectional images of the body, aiding clinicians in diagnosing and monitoring various medical conditions through advanced imaging techniques.
GE Medical Systems Ultrasound and Primary care Diagnostics,
The Venue series from GE Medical Systems includes advanced ultrasound systems that use pulsed Doppler technology to help clinicians capture live images and blood flow information. These devices assist in diagnostic imaging by providing high-quality ultrasound scans useful in a variety of clinical applications.
Wuxi Hisky Medical Technologies Co., Ltd.
The Confocal Microprobe Imaging System by Wuxi Hisky Medical Technologies is a high-resolution optical imaging device used in general and plastic surgery. It helps clinicians obtain detailed images of tissue microstructures during procedures, improving diagnosis and surgical outcomes.
We scour dozens of sources so you don't have to. Get all the essential information in a 5-minute read.
Never miss a critical update. Understand the trends shaping the future of your practice and research.
Be the first to know about the tools and technologies that matter, from clinical practice to academic research.
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.