Sort by:
Page 1 of 323 results

Metal Suppression Magnetic Resonance Imaging Techniques in Orthopaedic and Spine Surgery.

Ziegeler K, Yoon D, Hoff M, Theologis AA

pubmed logopapersMay 15 2025
Implantation of metallic instrumentation is the mainstay of a variety of orthopaedic and spine surgeries. Postoperatively, imaging of the soft tissues around these implants is commonly required to assess for persistent, recurrent, and/or new pathology (ie, instrumentation loosening, particle disease, infection, neural compression); visualization of these pathologies often requires the superior soft-tissue contrast of magnetic resonance imaging (MRI). As susceptibility artifacts from ferromagnetic implants can result in unacceptable image quality, unique MRI approaches are often necessary to provide accurate imaging. In this text, a comprehensive review is provided on common artifacts encountered in orthopaedic MRI, including comparisons of artifacts from different metallic alloys and common nonpropriety/propriety MR metallic artifact reduction methods. The newest metal-artifact suppression imaging technology and future directions (ie, deep learning/artificial intelligence) in this important field will be considered.

Measuring the severity of knee osteoarthritis with an aberration-free fast line scanning Raman imaging system.

Jiao C, Ye J, Liao J, Li J, Liang J, He S

pubmed logopapersMay 15 2025
Osteoarthritis (OA) is a major cause of disability worldwide, with symptoms like joint pain, limited functionality, and decreased quality of life, potentially leading to deformity and irreversible damage. Chemical changes in joint tissues precede imaging alterations, making early diagnosis challenging for conventional methods like X-rays. Although Raman imaging provides detailed chemical information, it is time-consuming. This paper aims to achieve rapid osteoarthritis diagnosis and grading using a self-developed Raman imaging system combined with deep learning denoising and acceleration algorithms. Our self-developed aberration-corrected line-scanning confocal Raman imaging device acquires a line of Raman spectra (hundreds of points) per scan using a galvanometer or displacement stage, achieving spatial and spectral resolutions of 2 μm and 0.2 nm, respectively. Deep learning algorithms enhance the imaging speed by over 4 times through effective spectrum denoising and signal-to-noise ratio (SNR) improvement. By leveraging the denoising capabilities of deep learning, we are able to acquire high-quality Raman spectral data with a reduced integration time, thereby accelerating the imaging process. Experiments on the tibial plateau of osteoarthritis patients compared three excitation wavelengths (532, 671, and 785 nm), with 671 nm chosen for optimal SNR and minimal fluorescence. Machine learning algorithms achieved a 98 % accuracy in distinguishing articular from calcified cartilage and a 97 % accuracy in differentiating osteoarthritis grades I to IV. Our fast Raman imaging system, combining an aberration-corrected line-scanning confocal Raman imager with deep learning denoising, offers improved imaging speed and enhanced spectral and spatial resolutions. It enables rapid, label-free detection of osteoarthritis severity and can identify early compositional changes before clinical imaging, allowing precise grading and tailored treatment, thus advancing orthopedic diagnostics and improving patient outcomes.

Comparison of lumbar disc degeneration grading between deep learning model SpineNet and radiologist: a longitudinal study with a 14-year follow-up.

Murto N, Lund T, Kautiainen H, Luoma K, Kerttula L

pubmed logopapersMay 15 2025
To assess the agreement between lumbar disc degeneration (DD) grading by the convolutional neural network model SpineNet and radiologist's visual grading. In a 14-year follow-up MRI study involving 19 male volunteers, lumbar DD was assessed by SpineNet and two radiologists using the Pfirrmann classification at baseline (age 37) and after 14 years (age 51). Pfirrmann summary scores (PSS) were calculated by summing individual disc grades. The agreement between the first radiologist and SpineNet was analyzed, with the second radiologist's grading used for inter-observer agreement. Significant differences were observed in the Pfirrmann grades and PSS assigned by the radiologist and SpineNet at both time points. SpineNet assigned Pfirrmann grade 1 to several discs and grade 5 to more discs compared to the radiologists. The concordance correlation coefficients (CCC) of PSS between the radiologist and SpineNet were 0.54 (95% CI: 0.28 to 0.79) at baseline and 0.54 (0.27 to 0.80) at follow-up. The average kappa (κ) values of 0.74 (0.68 to 0.81) at baseline and 0.68 (0.58 to 0.77) at follow-up. CCC of PSS between the radiologists was 0.83 (0.69 to 0.97) at baseline and 0.78 (0.61 to 0.95) at follow-up, with κ values ranging from 0.73 to 0.96. We found fair to substantial agreement in DD grading between SpineNet and the radiologist, albeit with notable discrepancies. These findings indicate that AI-based systems like SpineNet hold promise as complementary tools in radiological evaluation, including in longitudinal studies, but emphasize the need for ongoing refinement of AI algorithms.

Synthetic Data-Enhanced Classification of Prevalent Osteoporotic Fractures Using Dual-Energy X-Ray Absorptiometry-Based Geometric and Material Parameters.

Quagliato L, Seo J, Hong J, Lee T, Chung YS

pubmed logopapersMay 14 2025
Bone fracture risk assessment for osteoporotic patients is essential for implementing early countermeasures and preventing discomfort and hospitalization. Current methodologies, such as Fracture Risk Assessment Tool (FRAX), provide a risk assessment over a 5- to 10-year period rather than evaluating the bone's current health status. The database was collected by Ajou University Medical Center from 2017 to 2021. It included 9,260 patients, aged 55 to 99, comprising 242 femur fracture (FX) cases and 9,018 non-fracture (NFX) cases. To model the association of the bone's current health status with prevalent FXs, three prediction algorithms-extreme gradient boosting (XGB), support vector machine, and multilayer perceptron-were trained using two-dimensional dual-energy X-ray absorptiometry (2D-DXA) analysis results and subsequently benchmarked. The XGB classifier, which proved most effective, was then further refined using synthetic data generated by the adaptive synthetic oversampler to balance the FX and NFX classes and enhance boundary sharpness for better classification accuracy. The XGB model trained on raw data demonstrated good prediction capabilities, with an area under the curve (AUC) of 0.78 and an F1 score of 0.71 on test cases. The inclusion of synthetic data improved classification accuracy in terms of both specificity and sensitivity, resulting in an AUC of 0.99 and an F1 score of 0.98. The proposed methodology demonstrates that current bone health can be assessed through post-processed results from 2D-DXA analysis. Moreover, it was also shown that synthetic data can help stabilize uneven databases by balancing majority and minority classes, thereby significantly improving classification performance.

Total radius BMD correlates with the hip and lumbar spine BMD among post-menopausal patients with fragility wrist fracture in a machine learning model.

Ruotsalainen T, Panfilov E, Thevenot J, Tiulpin A, Saarakkala S, Niinimäki J, Lehenkari P, Valkealahti M

pubmed logopapersMay 14 2025
Osteoporosis screening should be systematic in the group of over 50-year-old females with a radius fracture. We tested a phantom combined with machine learning model and studied osteoporosis-related variables. This machine learning model for screening osteoporosis using plain radiographs requires further investigation in larger cohorts to assess its potential as a replacement for DXA measurements in settings where DXA is not available. The main purpose of this study was to improve osteoporosis screening, especially in post-menopausal patients with fragility wrist fractures. The secondary objective was to increase understanding of the connection between osteoporosis and aging, as well as other risk factors. We collected data on 83 females > 50 years old with a distal radius fracture treated at Oulu University Hospital in 2019-2020. The data included basic patient information, WHO FRAX tool, blood tests, X-ray imaging of the fractured wrist, and DXA scanning of the non-fractured forearm, both hips, and the lumbar spine. Machine learning was used in combination with a custom phantom. Eighty-five percent of the study population had osteopenia or osteoporosis. Only 28.4% of patients had increased bone resorption activity measured by ICTP values. Total radius BMD correlated with other osteoporosis-related variables (age r =  - 0.494, BMI r = 0.273, FRAX osteoporotic fracture risk r =  - 0.419, FRAX hip fracture risk r =  - 0.433, hip BMD r = 0.435, and lumbar spine BMD r = 0.645), but the ultra distal (UD) radius BMD did not. Our custom phantom combined with a machine learning model showed potential for screening osteoporosis, with the class-wise accuracies for "Osteoporotic vs. osteopenic & normal bone" of 76% and 75%, respectively. We suggest osteoporosis screening for all females over 50 years old with wrist fractures. We found that the total radius BMD correlates with the central BMD. Due to the limited sample size in the phantom and machine learning parts of the study, further research is needed to make a clinically useful tool for screening osteoporosis.

Large language models for efficient whole-organ MRI score-based reports and categorization in knee osteoarthritis.

Xie Y, Hu Z, Tao H, Hu Y, Liang H, Lu X, Wang L, Li X, Chen S

pubmed logopapersMay 14 2025
To evaluate the performance of large language models (LLMs) in automatically generating whole-organ MRI score (WORMS)-based structured MRI reports and predicting osteoarthritis (OA) severity for the knee. A total of 160 consecutive patients suspected of OA were included. Knee MRI reports were reviewed by three radiologists to establish the WORMS reference standard for 39 key features. GPT-4o and GPT-4o-mini were prompted using in-context knowledge (ICK) and chain-of-thought (COT) to generate WORMS-based structured reports from original reports and to automatically predict the OA severity. Four Orthopedic surgeons reviewed original and LLM-generated reports to conduct pairwise preference and difficulty tests, and their review times were recorded. GPT-4o demonstrated perfect performance in extracting the laterality of the knee (accuracy = 100%). GPT-4o outperformed GPT-4o mini in generating WORMS reports (Accuracy: 93.9% vs 76.2%, respectively). GPT-4o achieved higher recall (87.3% s 46.7%, p < 0.001), while maintaining higher precision compared to GPT-4o mini (94.2% vs 71.2%, p < 0.001). For predicting OA severity, GPT-4o outperformed GPT-4o mini across all prompt strategies (best accuracy: 98.1% vs 68.7%). Surgeons found it easier to extract information and gave more preference to LLM-generated reports over the original reports (both p < 0.001) while spending less time on each report (51.27 ± 9.41 vs 87.42 ± 20.26 s, p < 0.001). GPT-4o generated expert multi-feature, WORMS-based reports from original free-text knee MRI reports. GPT-4o with COT achieved high accuracy in categorizing OA severity. Surgeons reported greater preference and higher efficiency when using LLM-generated reports. The perfect performance of generating WORMS-based reports and the high efficiency and ease of use suggest that integrating LLMs into clinical workflows could greatly enhance productivity and alleviate the documentation burden faced by clinicians in knee OA. GPT-4o successfully generated WORMS-based knee MRI reports. GPT-4o with COT prompting achieved impressive accuracy in categorizing knee OA severity. Greater preference and higher efficiency were reported for LLM-generated reports.

Individual thigh muscle and proximal femoral features predict displacement in femoral neck Fractures: An AI-driven CT analysis.

Yoo JI, Kim HS, Kim DY, Byun DW, Ha YC, Lee YK

pubmed logopapersMay 13 2025
Hip fractures, particularly among the elderly, impose a significant public health burden due to increased morbidity and mortality. Femoral neck fractures, commonly resulting from low-energy falls, can lead to severe complications such as avascular necrosis, and often necessitate total hip arthroplasty. This study harnesses AI to enhance musculoskeletal assessments by performing automatic muscle segmentation on whole thigh CT scans and detailed cortical measurements using the StradView program. The primary aim is to improve the prediction and prevention of severe femoral neck fractures, ultimately supporting more effective rehabilitation and treatment strategies. This study measured anatomical features from whole thigh CT scans of 60 femoral neck fracture patients. An AI-driven individual muscle segmentation model (a dice score of 0.84) segmented 27 muscles in the thigh region, to calculate muscle volumes. Proximal femoral bone parameters were measured using StradView, including average cortical thickness, inner density and FWHM at four regions. Correlation analysis evaluated relationships between muscle features, cortical parameters, and fracture displacement. Machine learning models (Random Forest, SVM and Multi-layer Perceptron) predicted displacement using these variables. Correlation analysis showed significant associations between femoral neck displacement and trabecular density at the femoral neck/intertrochanter, as well as volumes of specific thigh muscles such as the Tensor fasciae latae. Machine learning models using a combined feature set of thigh muscle volumes and proximal femoral parameters performed best in predicting displacement, with the Random Forest model achieving an F1 score of 0.91 and SVM model 0.93. Decreased volumes of the Tensor fasciae latae, Rectus femoris, and Semimembranosus muscles, coupled with reduced trabecular density at the femoral neck and intertrochanter, were significantly associated with increased fracture displacement. Notably, our SVM model-integrating both muscle and femoral features-achieved the highest predictive performance. These findings underscore the critical importance of muscle strength and bone density in rehabilitation planning and highlight the potential of AI-driven predictive models for improving clinical outcomes in femoral neck fractures.

Rethinking femoral neck anteversion assessment: a novel automated 3D CT method compared to traditional manual techniques.

Xiao H, Yibulayimu S, Zhao C, Sang Y, Chen Y, Ge Y, Sun Q, Ming Y, Bei M, Zhu G, Song Y, Wang Y, Wu X

pubmed logopapersMay 13 2025
To evaluate the accuracy and reliability of a novel automated 3D CT-based method for measuring femoral neck anteversion (FNA) compared to three traditional manual methods. A total of 126 femurs from 63 full-length CT scans (35 men and 28 women; average age: 52.0 ± 14.7 years) were analyzed. The automated method used a deep learning network for femur segmentation, landmark identification, and anteversion calculation, with results generated based on two axes: Auto_GT (using the greater trochanter-to-intercondylar notch center axis) and Auto_P (using the piriformis fossa-to-intercondylar notch center axis). These results were validated through manual landmark annotation. The same dataset was assessed using three conventional manual methods: Murphy, Reikeras, and Lee methods. Intra- and inter-observer reliability were assessed using intraclass correlation coefficients (ICCs), and pairwise comparisons analyzed correlations and differences between methods. The automated methods produced consistent FNA measurements (Auto_GT: 17.59 ± 9.16° vs. Auto_P: 17.37 ± 9.17° on the right; 15.08 ± 9.88° vs. 14.84 ± 9.90° on the left). Intra-observer ICCs ranged from 0.864 to 0.961, and inter-observer ICCs between Auto_GT and the manual methods were high, except for the Lee method. No significant differences were observed between the two automated methods or between the automated and manual verification methods. Moreover, strong correlations (R > 0.9, p < 0.001) were found between Auto_GT and the manual methods. The novel automated 3D CT-based method demonstrates strong reproducibility and reliability for measuring femoral neck anteversion, with performance comparable to traditional manual techniques. These results indicate its potential utility for preoperative planning, postoperative evaluation, and computer-assisted orthopedic procedures. Not applicable.

The automatic pelvic screw corridor planning for intact pelvises based on deep learning deformable registration.

Ju F, Chai X, Zhao J, Dong M

pubmed logopapersMay 13 2025
Percutaneous screw fixation technique in pelvic trauma surgery is an extremely challenging operation that typically requires a trial-and-error insertion process under the guidance of continuous intraoperative X-ray. This process can be simplified by utilizing surgical navigation systems. Understanding the complexity of the intraosseous pelvis corridor is essential for establishing the optimal screw corridor, which further facilitates preoperative planning and intraoperative application. Traditional screw corridor search algorithms necessitate traversing the entrance and exit areas of the screw and calculating the distance from the corridor axis to the bone surface to ascertain the location of the screw. This process is computationally complex, and manual measurement by the physician is time consuming, labor intensive, and empirically dependent. In this study, we propose an automated planning algorithm for pelvic screw corridors based on deep learning deformable registration technology, which can efficiently and accurately identify the optimal screw corridors. Compared to traditional methods, the innovations of this study include: (1) the introduction of corridor safety range constraints on screw positioning, which enhances search efficiency; (2) the application of deep learning deformable registration to facilitate the automatic annotation of the screw entrance and exit areas, as well as the safety range of the corridor; and (3) the development of a highly efficient algorithm for optimal corridor searching, quickly determining the corridor without traversing the entrance and exit areas and enhancing efficiency via a vector-based diameter calculation method. The whole framework of the algorithm consists of three key components: atlas generation module, deformable registration and optimal corridor searching strategy. In the experiments, we test the performance of the proposed algorithm on 198 intact pelvises for calculating the optimal corridor of anterior column corridor and S1 sacroiliac screws. The results show that the new algorithm can increase the corridor diameter by 2.1%-3.3% compared to manual measurements, while significantly reducing the average time from 1038s and 3398s to 18.9s and 26.7s on anterior column corridor and S1 sacroiliac corridor, respectively, compared to the traditional screw searching algorithm. This demonstrates the advantages of the algorithm in terms of efficiency and accuracy. However, the current method is validated only on intact pelvises; further research is required for pelvic fracture scenarios.

Application of artificial intelligence-based three dimensional digital reconstruction technology in precision treatment of complex total hip arthroplasty.

Zheng Q, She H, Zhang Y, Zhao P, Liu X, Xiang B

pubmed logopapersMay 10 2025
To evaluate the predictive ability of AI HIP in determining the size and position of prostheses during complex total hip arthroplasty (THA). Additionally, it investigates the factors influencing the accuracy of preoperative planning predictions. From April 2021 to December 2023, patients with complex hip joint diseases were divided into the AI preoperative planning group (n = 29) and the X-ray preoperative planning group (n = 27). Postoperative X-rays were used to measure acetabular anteversion angle, abduction angle, tip-to-sternum distance, intraoperative duration, blood loss, planning time, postoperative Harris Hip Scores (at 2 weeks, 3 months, and 6 months), and visual analogue scale (VAS) pain scores (at 2 weeks and at final follow-up) to analyze clinical outcomes. On the acetabular side, the accuracy of AI preoperative planning was higher compared to X-ray preoperative planning (75.9% vs. 44.4%, P = 0.016). On the femoral side, AI preoperative planning also showed higher accuracy compared to X-ray preoperative planning (85.2% vs. 59.3%, P = 0.033). The AI preoperative planning group showed superior outcomes in terms of reducing bilateral leg length discrepancy (LLD), decreasing operative time and intraoperative blood loss, early postoperative recovery, and pain control compared to the X-ray preoperative planning group (P < 0.05). No significant differences were observed between the groups regarding bilateral femoral offset (FO) differences, bilateral combined offset (CO) differences, abduction angle, anteversion angle, or tip-to-sternum distance. Factors such as gender, age, affected side, comorbidities, body mass index (BMI) classification, bone mineral density did not affect the prediction accuracy of AI HIP preoperative planning. Artificial intelligence-based 3D planning can be effectively utilized for preoperative planning in complex THA. Compared to X-ray templating, AI demonstrates superior accuracy in prosthesis measurement and provides significant clinical benefits, particularly in early postoperative recovery.
Page 1 of 323 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.