Sort by:
Page 1 of 15145 results
Next

SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.

Massalimova A, Liebmann F, Jecklin S, Carrillo F, Farshad M, Fürnstahl P

pubmed logopapersDec 1 2025
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.

Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

Chen CW, Tsai HH, Yeh CY, Yang CK, Tsou HK, Leong PY, Wei JC

pubmed logopapersDec 1 2025
The development of the Artificial Intelligence (AI)-based severity inspection model for ankylosing spondylitis (AS) could support health professionals to rapidly assess the severity of the disease, enhance proficiency, and reduce the demands of human resources. This paper aims to develop an AI-based severity inspection model for AS using patients' X-ray images and modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). The numerical simulation with AI is developed following the progress of data preprocessing, building and testing the model, and then the model. The training data is preprocessed by inviting three experts to check the X-ray images of 222 patients following the Gold Standard. The model is then developed through two stages, including keypoint detection and mSASSS evaluation. The two-stage AI-based severity inspection model for AS was developed to automatically detect spine points and evaluate mSASSS scores. At last, the data obtained from the developed model was compared with those from experts' assessment to analyse the accuracy of the model. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki. The spine point detection at the first stage achieved 1.57 micrometres in mean error distance with the ground truth, and the second stage of the classification network can reach 0.81 in mean accuracy. The model can correctly identify 97.4% patches belonging to mSASSS score 3, while those belonging to score 0 can still be classified into scores 1 or 2. The automatic severity inspection model for AS developed in this paper is accurate and can support health professionals in rapidly assessing the severity of AS, enhancing assessment proficiency, and reducing the demands of human resources.

Automated Measurements of Spinal Parameters for Scoliosis Using Deep Learning.

Meng X, Zhu S, Yang Q, Zhu F, Wang Z, Liu X, Dong P, Wang S, Fan L

pubmed logopapersJun 15 2025
Retrospective single-institution study. To develop and validate an automated convolutional neural network (CNN) to measure the Cobb angle, T1 tilt angle, coronal balance, clavicular angle, height of the shoulders, T5-T12 Cobb angle, and sagittal balance for accurate scoliosis diagnosis. Scoliosis, characterized by a Cobb angle >10°, requires accurate and reliable measurements to guide treatment. Traditional manual measurements are time-consuming and have low interobserver and intraobserver reliability. While some automated tools exist, they often require manual intervention and focus primarily on the Cobb angle. In this study, we utilized four data sets comprising the anterior-posterior (AP) and lateral radiographs of 1682 patients with scoliosis. The CNN includes coarse segmentation, landmark localization, and fine segmentation. The measurements were evaluated using the dice coefficient, mean absolute error (MAE), and percentage of correct key-points (PCK) with a 3-mm threshold. An internal testing set, including 87 adolescent (7-16 yr) and 26 older adult patients (≥60 yr), was used to evaluate the agreement between automated and manual measurements. The automated measures by the CNN achieved high mean dice coefficients (>0.90), PCK of 89.7%-93.7%, and MAE for vertebral corners of 2.87-3.62 mm on AP radiographs. Agreement on the internal testing set for manual measurements was acceptable, with an MAE of 0.26 mm or degree-0.51 mm or degree for the adolescent subgroup and 0.29 mm or degree-4.93 mm or degree for the older adult subgroup on AP radiographs. The MAE for the T5-T12 Cobb angle and sagittal balance, on lateral radiographs, was 1.03° and 0.84 mm, respectively, in adolescents, and 4.60° and 9.41 mm, respectively, in older adults. Automated measurement time was significantly shorter compared with manual measurements. The deep learning automated system provides rapid, accurate, and reliable measurements for scoliosis diagnosis, which could improve clinical workflow efficiency and guide scoliosis treatment. Level III.

Fast MRI of bones in the knee -- An AI-driven reconstruction approach for adiabatic inversion recovery prepared ultra-short echo time sequences

Philipp Hans Nunn, Henner Huflage, Jan-Peter Grunz, Philipp Gruschwitz, Oliver Schad, Thorsten Alexander Bley, Johannes Tran-Gia, Tobias Wech

arxiv logopreprintJun 13 2025
Purpose: Inversion recovery prepared ultra-short echo time (IR-UTE)-based MRI enables radiation-free visualization of osseous tissue. However, sufficient signal-to-noise ratio (SNR) can only be obtained with long acquisition times. This study proposes a data-driven approach to reconstruct undersampled IR-UTE knee data, thereby accelerating MR-based 3D imaging of bones. Methods: Data were acquired with a 3D radial IR-UTE pulse sequence, implemented using the open-source framework Pulseq. A denoising convolutional neural network (DnCNN) was trained in a supervised fashion using data from eight healthy subjects. Conjugate gradient sensitivity encoding (CG-SENSE) reconstructions of different retrospectively undersampled subsets (corresponding to 2.5-min, 5-min and 10-min acquisition times) were paired with the respective reference dataset reconstruction (30-min acquisition time). The DnCNN was then integrated into a Landweber-based reconstruction algorithm, enabling physics-based iterative reconstruction. Quantitative evaluations of the approach were performed using one prospectively accelerated scan as well as retrospectively undersampled datasets from four additional healthy subjects, by assessing the structural similarity index measure (SSIM), the peak signal-to-noise ratio (PSNR), the normalized root mean squared error (NRMSE), and the perceptual sharpness index (PSI). Results: Both the reconstructions of prospective and retrospective acquisitions showed good agreement with the reference dataset, indicating high image quality, particularly for an acquisition time of 5 min. The proposed method effectively preserves contrast and structural details while suppressing noise, albeit with a slight reduction in sharpness. Conclusion: The proposed method is poised to enable MR-based bone assessment in the knee within clinically feasible scan times.

Identification of Atypical Scoliosis Patterns Using X-ray Images Based on Fine-Grained Techniques in Deep Learning.

Chen Y, He Z, Yang KG, Qin X, Lau AY, Liu Z, Lu N, Cheng JC, Lee WY, Chui EC, Qiu Y, Liu X, Chen X, Zhu Z

pubmed logopapersJun 11 2025
Study DesignRetrospective diagnostic study.ObjectivesTo develop a fine-grained classification model based on deep learning using X-ray images, to screen for scoliosis, and further to screen for atypical scoliosis patterns associated with Chiari Malformation type I (CMS).MethodsA total of 508 pairs of coronal and sagittal X-ray images from patients with CMS, adolescent idiopathic scoliosis (AIS), and normal controls (NC) were processed through construction of the ResNet-50 model, including the development of ResNet-50 Coronal, ResNet-50 Sagittal, ResNet-50 Dual, ResNet-50 Concat, and ResNet-50 Bilinear models. Evaluation metrics calculated included accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for both the scoliosis diagnosis system and the CMS diagnosis system, along with the generation of receiver operating characteristic (ROC) curves and heatmaps for CMS diagnosis.ResultsThe classification results for the scoliosis diagnosis system showed that the ResNet-50 Coronal model had the best overall performance. For the CMS diagnosis system, the ResNet-50 Coronal and ResNet-50 Dual models demonstrated optimal performance. Specifically, the ResNet-50 Dual model reached the diagnostic level of senior spine surgeons, and the ResNet-50 Coronal model even surpassed senior surgeons in specificity and PPV. The CMS heatmaps revealed that major classification weights were concentrated on features such as atypical curve types, significant lateral shift of scoliotic segments, longer affected segments, and severe trunk tilt.ConclusionsThe fine-grained classification model based on the ResNet-50 network can accurately screen for atypical scoliosis patterns associated with CMS, highlighting the importance of radiographic features such as atypical curve types in model classification.

Machine learning is changing osteoporosis detection: an integrative review.

Zhang Y, Ma M, Huang X, Liu J, Tian C, Duan Z, Fu H, Huang L, Geng B

pubmed logopapersJun 10 2025
Machine learning drives osteoporosis detection and screening with higher clinical accuracy and accessibility than traditional osteoporosis screening tools. This review takes a step-by-step view of machine learning for osteoporosis detection, providing insights into today's osteoporosis detection and the outlook for the future. The early diagnosis and risk detection of osteoporosis have always been crucial and challenging issues in the medical field. With the in-depth application of artificial intelligence technology, especially machine learning technology in the medical field, significant breakthroughs have been made in the application of early diagnosis and risk detection of osteoporosis. Machine learning is a multidimensional technical system that encompasses a wide variety of algorithm types. Machine learning algorithms have become relatively mature and developed over many years in medical data processing. They possess stable and accurate detection performance, laying a solid foundation for the detection and diagnosis of osteoporosis. As an essential part of the machine learning technical system, deep-learning algorithms are complex algorithm models based on artificial neural networks. Due to their robust image recognition and feature extraction capabilities, deep learning algorithms have become increasingly mature in the early diagnosis and risk assessment of osteoporosis in recent years, opening new ideas and approaches for the early and accurate diagnosis and risk detection of osteoporosis. This paper reviewed the latest research over the past decade, ranging from relatively basic and widely adopted machine learning algorithms combined with clinical data to more advanced deep learning techniques integrated with imaging data such as X-ray, CT, and MRI. By analyzing the application of algorithms at different stages, we found that these basic machine learning algorithms performed well when dealing with single structured data but encountered limitations when handling high-dimensional and unstructured imaging data. On the other hand, deep learning can significantly improve detection accuracy. It does this by automatically extracting image features, especially in image histological analysis. However, it faces challenges. These include the "black-box" problem, heavy reliance on large amounts of labeled data, and difficulties in clinical interpretability. These issues highlighted the importance of model interpretability in future machine learning research. Finally, we expect to develop a predictive model in the future that combines multimodal data (such as clinical indicators, blood biochemical indicators, imaging data, and genetic data) integrated with electronic health records and machine learning techniques. This model aims to present a skeletal health monitoring system that is highly accessible, personalized, convenient, and efficient, furthering the early detection and prevention of osteoporosis.

Arthroscopy-validated diagnostic performance of sub-5-min deep learning super-resolution 3T knee MRI in children and adolescents.

Vosshenrich J, Breit HC, Donners R, Obmann MM, Harder D, Ahlawat S, Walter SS, Serfaty A, Cantarelli Rodrigues T, Recht M, Stern SE, Fritz J

pubmed logopapersJun 10 2025
This study aims to determine the diagnostic performance of sub-5-min combined sixfold parallel imaging (PIx3)-simultaneous multislice (SMSx2)-accelerated deep learning (DL) super-resolution 3T knee MRI in children and adolescents. Children with painful knee conditions who underwent PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI and arthroscopy between October 2022 and December 2023 were retrospectively included. Nine fellowship-trained musculoskeletal radiologists independently scored the MRI studies for image quality and the presence of artifacts (Likert scales, range: 1 = very bad/severe, 5 = very good/absent), as well as structural abnormalities. Interreader agreements and diagnostic performance testing was performed. Forty-four children (mean age: 15 ± 2 years; range: 9-17 years; 24 boys) who underwent knee MRI and arthroscopic surgery within 22 days (range, 2-133) were evaluated. Overall image quality was very good (median rating: 5 [IQR: 4-5]). Motion artifacts (5 [5-5]) and image noise (5 [4-5]) were absent. Arthroscopy-verified abnormalities were detected with good or better interreader agreement (κ ≥ 0.74). Sensitivity, specificity, accuracy, and AUC values were 100%, 84%, 93%, and 0.92, respectively, for anterior cruciate ligament tears; 71%, 97%, 93%, and 0.84 for medial meniscus tears; 65%, 100%, 86%, and 0.82 for lateral meniscus tears; 100%, 100%, 100%, and 1.00 for discoid lateral menisci; 100%, 95%, 96%, and 0.98 for medial patellofemoral ligament tears; and 55%, 100%, 98%, and 0.77 for articular cartilage defects. Clinical sub-5-min PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI provides excellent image quality and high diagnostic performance for diagnosing internal derangement in children and adolescents.

The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset

Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott

arxiv logopreprintJun 10 2025
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.

Automated detection of spinal bone marrow oedema in axial spondyloarthritis: training and validation using two large phase 3 trial datasets.

Jamaludin A, Windsor R, Ather S, Kadir T, Zisserman A, Braun J, Gensler LS, Østergaard M, Poddubnyy D, Coroller T, Porter B, Ligozio G, Readie A, Machado PM

pubmed logopapersJun 9 2025
To evaluate the performance of machine learning (ML) models for the automated scoring of spinal MRI bone marrow oedema (BMO) in patients with axial spondyloarthritis (axSpA) and compare them with expert scoring. ML algorithms using SpineNet software were trained and validated on 3483 spinal MRIs from 686 axSpA patients across two clinical trial datasets. The scoring pipeline involved (i) detection and labelling of vertebral bodies and (ii) classification of vertebral units for the presence or absence of BMO. Two models were tested: Model 1, without manual segmentation, and Model 2, incorporating an intermediate manual segmentation step. Model outputs were compared with those of human experts using kappa statistics, balanced accuracy, sensitivity, specificity, and AUC. Both models performed comparably to expert readers, regarding presence vs absence of BMO. Model 1 outperformed Model 2, with an AUC of 0.94 (vs 0.88), accuracy of 75.8% (vs 70.5%), and kappa of 0.50 (vs 0.31), using absolute reader consensus scoring as the external reference; this performance was similar to the expert inter-reader accuracy of 76.8% and kappa of 0.47, in a radiographic axSpA dataset. In a non-radiographic axSpA dataset, Model 1 achieved an AUC of 0.97 (vs 0.91 for Model 2), accuracy of 74.6% (vs 70%), and kappa of 0.52 (vs 0.27), comparable to the expert inter-reader accuracy of 74.2% and kappa of 0.46. ML software shows potential for automated MRI BMO assessment in axSpA, offering benefits such as improved consistency, reduced labour costs, and minimised inter- and intra-reader variability. Clinicaltrials.gov, MEASURE 1 study (NCT01358175); PREVENT study (NCT02696031).

Comparative accuracy of two commercial AI algorithms for musculoskeletal trauma detection in emergency radiographs.

Huhtanen JT, Nyman M, Blanco Sequeiros R, Koskinen SK, Pudas TK, Kajander S, Niemi P, Aronen HJ, Hirvonen J

pubmed logopapersJun 9 2025
Missed fractures are the primary cause of interpretation errors in emergency radiology, and artificial intelligence has recently shown great promise in radiograph interpretation. This study compared the diagnostic performance of two AI algorithms, BoneView and RBfracture, in detecting traumatic abnormalities (fractures and dislocations) in MSK radiographs. AI algorithms analyzed 998 radiographs (585 normal, 413 abnormal), against the consensus of two MSK specialists. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and interobserver agreement (Cohen's Kappa) were calculated. 95% confidence intervals (CI) assessed robustness, and McNemar's tests compared sensitivity and specificity between the AI algorithms. BoneView demonstrated a sensitivity of 0.893 (95% CI: 0.860-0.920), specificity of 0.885 (95% CI: 0.857-0.909), PPV of 0.846, NPV of 0.922, and accuracy of 0.889. RBfracture demonstrated a sensitivity of 0.872 (95% CI: 0.836-0.901), specificity of 0.892 (95% CI: 0.865-0.915), PPV of 0.851, NPV of 0.908, and accuracy of 0.884. No statistically significant differences were found in sensitivity (p = 0.151) or specificity (p = 0.708). Kappa was 0.81 (95% CI: 0.77-0.84), indicating almost perfect agreement between the two AI algorithms. Performance was similar in adults and children. Both AI algorithms struggled more with subtle abnormalities, which constituted 66% and 70% of false negatives but only 20% and 18% of true positives for the two AI algorithms, respectively (p < 0.001). BoneView and RBfracture exhibited high diagnostic performance and almost perfect agreement, with consistent results across adults and children, highlighting the potential of AI in emergency radiograph interpretation.
Page 1 of 15145 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.