Sort by:
Page 1 of 65644 results
Next

Exploring the robustness of TractOracle methods in RL-based tractography

Jeremi Levesque, Antoine Théberge, Maxime Descoteaux, Pierre-Marc Jodoin

arxiv logopreprintJul 15 2025
Tractography algorithms leverage diffusion MRI to reconstruct the fibrous architecture of the brain's white matter. Among machine learning approaches, reinforcement learning (RL) has emerged as a promising framework for tractography, outperforming traditional methods in several key aspects. TractOracle-RL, a recent RL-based approach, reduces false positives by incorporating anatomical priors into the training process via a reward-based mechanism. In this paper, we investigate four extensions of the original TractOracle-RL framework by integrating recent advances in RL, and we evaluate their performance across five diverse diffusion MRI datasets. Results demonstrate that combining an oracle with the RL framework consistently leads to robust and reliable tractography, regardless of the specific method or dataset used. We also introduce a novel RL training scheme called Iterative Reward Training (IRT), inspired by the Reinforcement Learning from Human Feedback (RLHF) paradigm. Instead of relying on human input, IRT leverages bundle filtering methods to iteratively refine the oracle's guidance throughout training. Experimental results show that RL methods trained with oracle feedback significantly outperform widely used tractography techniques in terms of accuracy and anatomical validity.

Advanced U-Net Architectures with CNN Backbones for Automated Lung Cancer Detection and Segmentation in Chest CT Images

Alireza Golkarieha, Kiana Kiashemshakib, Sajjad Rezvani Boroujenic, Nasibeh Asadi Isakand

arxiv logopreprintJul 14 2025
This study investigates the effectiveness of U-Net architectures integrated with various convolutional neural network (CNN) backbones for automated lung cancer detection and segmentation in chest CT images, addressing the critical need for accurate diagnostic tools in clinical settings. A balanced dataset of 832 chest CT images (416 cancerous and 416 non-cancerous) was preprocessed using Contrast Limited Adaptive Histogram Equalization (CLAHE) and resized to 128x128 pixels. U-Net models were developed with three CNN backbones: ResNet50, VGG16, and Xception, to segment lung regions. After segmentation, CNN-based classifiers and hybrid models combining CNN feature extraction with traditional machine learning classifiers (Support Vector Machine, Random Forest, and Gradient Boosting) were evaluated using 5-fold cross-validation. Metrics included accuracy, precision, recall, F1-score, Dice coefficient, and ROC-AUC. U-Net with ResNet50 achieved the best performance for cancerous lungs (Dice: 0.9495, Accuracy: 0.9735), while U-Net with VGG16 performed best for non-cancerous segmentation (Dice: 0.9532, Accuracy: 0.9513). For classification, the CNN model using U-Net with Xception achieved 99.1 percent accuracy, 99.74 percent recall, and 99.42 percent F1-score. The hybrid CNN-SVM-Xception model achieved 96.7 percent accuracy and 97.88 percent F1-score. Compared to prior methods, our framework consistently outperformed existing models. In conclusion, combining U-Net with advanced CNN backbones provides a powerful method for both segmentation and classification of lung cancer in CT scans, supporting early diagnosis and clinical decision-making.

Leveraging Swin Transformer for enhanced diagnosis of Alzheimer's disease using multi-shell diffusion MRI

Quentin Dessain, Nicolas Delinte, Bernard Hanseeuw, Laurence Dricot, Benoît Macq

arxiv logopreprintJul 14 2025
Objective: This study aims to support early diagnosis of Alzheimer's disease and detection of amyloid accumulation by leveraging the microstructural information available in multi-shell diffusion MRI (dMRI) data, using a vision transformer-based deep learning framework. Methods: We present a classification pipeline that employs the Swin Transformer, a hierarchical vision transformer model, on multi-shell dMRI data for the classification of Alzheimer's disease and amyloid presence. Key metrics from DTI and NODDI were extracted and projected onto 2D planes to enable transfer learning with ImageNet-pretrained models. To efficiently adapt the transformer to limited labeled neuroimaging data, we integrated Low-Rank Adaptation. We assessed the framework on diagnostic group prediction (cognitively normal, mild cognitive impairment, Alzheimer's disease dementia) and amyloid status classification. Results: The framework achieved competitive classification results within the scope of multi-shell dMRI-based features, with the best balanced accuracy of 95.2% for distinguishing cognitively normal individuals from those with Alzheimer's disease dementia using NODDI metrics. For amyloid detection, it reached 77.2% balanced accuracy in distinguishing amyloid-positive mild cognitive impairment/Alzheimer's disease dementia subjects from amyloid-negative cognitively normal subjects, and 67.9% for identifying amyloid-positive individuals among cognitively normal subjects. Grad-CAM-based explainability analysis identified clinically relevant brain regions, including the parahippocampal gyrus and hippocampus, as key contributors to model predictions. Conclusion: This study demonstrates the promise of diffusion MRI and transformer-based architectures for early detection of Alzheimer's disease and amyloid pathology, supporting biomarker-driven diagnostics in data-limited biomedical settings.

Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys)

Guohao Huo, Ruiting Dai, Hao Tang

arxiv logopreprintJul 14 2025
Brain tumor segmentation plays a critical role in clinical diagnosis and treatment planning, yet the variability in imaging quality across different MRI scanners presents significant challenges to model generalization. To address this, we propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys), which integrates Continuous Learning from Human Feedback to adaptively fine-tune segmentation models based on clinician feedback, thereby enhancing robustness to scanner-specific imaging characteristics. Central to this system is the Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS), which employs a Modality-Aware Adaptive Encoder (M2AE) to extract multi-scale semantic features efficiently, and a Graph-based Multi-Modal Collaborative Interaction Module (G2MCIM) to model complementary cross-modal relationships via graph structures. Additionally, we introduce a novel Voxel Refinement UpSampling Module (VRUM) that synergistically combines linear interpolation and multi-scale transposed convolutions to suppress artifacts while preserving high-frequency details, improving segmentation boundary accuracy. Our proposed GMLN-BTS model achieves a Dice score of 85.1% on the BraTS2017 dataset with only 4.58 million parameters, representing a 98% reduction compared to mainstream 3D Transformer models, and significantly outperforms existing lightweight approaches. This work demonstrates a synergistic breakthrough in achieving high-accuracy, resource-efficient brain tumor segmentation suitable for deployment in resource-constrained clinical environments.

A Brain Tumor Segmentation Method Based on CLIP and 3D U-Net with Cross-Modal Semantic Guidance and Multi-Level Feature Fusion

Mingda Zhang

arxiv logopreprintJul 14 2025
Precise segmentation of brain tumors from magnetic resonance imaging (MRI) is essential for neuro-oncology diagnosis and treatment planning. Despite advances in deep learning methods, automatic segmentation remains challenging due to tumor morphological heterogeneity and complex three-dimensional spatial relationships. Current techniques primarily rely on visual features extracted from MRI sequences while underutilizing semantic knowledge embedded in medical reports. This research presents a multi-level fusion architecture that integrates pixel-level, feature-level, and semantic-level information, facilitating comprehensive processing from low-level data to high-level concepts. The semantic-level fusion pathway combines the semantic understanding capabilities of Contrastive Language-Image Pre-training (CLIP) models with the spatial feature extraction advantages of 3D U-Net through three mechanisms: 3D-2D semantic bridging, cross-modal semantic guidance, and semantic-based attention mechanisms. Experimental validation on the BraTS 2020 dataset demonstrates that the proposed model achieves an overall Dice coefficient of 0.8567, representing a 4.8% improvement compared to traditional 3D U-Net, with a 7.3% Dice coefficient increase in the clinically important enhancing tumor (ET) region.

Disentanglement and Assessment of Shortcuts in Ophthalmological Retinal Imaging Exams

Leonor Fernandes, Tiago Gonçalves, João Matos, Luis Filipe Nakayama, Jaime S. Cardoso

arxiv logopreprintJul 13 2025
Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. While screening reduces the risk of blindness, traditional imaging is often costly and inaccessible. Artificial intelligence (AI) algorithms present a scalable diagnostic solution, but concerns regarding fairness and generalization persist. This work evaluates the fairness and performance of image-trained models in DR prediction, as well as the impact of disentanglement as a bias mitigation technique, using the diverse mBRSET fundus dataset. Three models, ConvNeXt V2, DINOv2, and Swin V2, were trained on macula images to predict DR and sensitive attributes (SAs) (e.g., age and gender/sex). Fairness was assessed between subgroups of SAs, and disentanglement was applied to reduce bias. All models achieved high DR prediction performance in diagnosing (up to 94% AUROC) and could reasonably predict age and gender/sex (91% and 77% AUROC, respectively). Fairness assessment suggests disparities, such as a 10% AUROC gap between age groups in DINOv2. Disentangling SAs from DR prediction had varying results, depending on the model selected. Disentanglement improved DINOv2 performance (2% AUROC gain), but led to performance drops in ConvNeXt V2 and Swin V2 (7% and 3%, respectively). These findings highlight the complexity of disentangling fine-grained features in fundus imaging and emphasize the importance of fairness in medical imaging AI to ensure equitable and reliable healthcare solutions.

AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)

Abdul Manaf, Nimra Mughal

arxiv logopreprintJul 13 2025
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Brain Stroke Detection and Classification Using CT Imaging with Transformer Models and Explainable AI

Shomukh Qari, Maha A. Thafar

arxiv logopreprintJul 13 2025
Stroke is one of the leading causes of death globally, making early and accurate diagnosis essential for improving patient outcomes, particularly in emergency settings where timely intervention is critical. CT scans are the key imaging modality because of their speed, accessibility, and cost-effectiveness. This study proposed an artificial intelligence framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from a dataset provided by the Republic of Turkey's Ministry of Health. The proposed method adopted MaxViT, a state-of-the-art Vision Transformer, as the primary deep learning model for image-based stroke classification, with additional transformer variants (vision transformer, transformer-in-transformer, and ConvNext). To enhance model generalization and address class imbalance, we applied data augmentation techniques, including synthetic image generation. The MaxViT model trained with augmentation achieved the best performance, reaching an accuracy and F1-score of 98.00%, outperforming all other evaluated models and the baseline methods. The primary goal of this study was to distinguish between stroke types with high accuracy while addressing crucial issues of transparency and trust in artificial intelligence models. To achieve this, Explainable Artificial Intelligence (XAI) was integrated into the framework, particularly Grad-CAM++. It provides visual explanations of the model's decisions by highlighting relevant stroke regions in the CT scans and establishing an accurate, interpretable, and clinically applicable solution for early stroke detection. This research contributed to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and enhancing access to timely and optimal stroke diagnosis in emergency departments, thereby saving more lives.

Pre-trained Under Noise: A Framework for Robust Bone Fracture Detection in Medical Imaging

Robby Hoover, Nelly Elsayed, Zag ElSayed, Chengcheng Li

arxiv logopreprintJul 13 2025
Medical Imagings are considered one of the crucial diagnostic tools for different bones-related diseases, especially bones fractures. This paper investigates the robustness of pre-trained deep learning models for classifying bone fractures in X-ray images and seeks to address global healthcare disparity through the lens of technology. Three deep learning models have been tested under varying simulated equipment quality conditions. ResNet50, VGG16 and EfficientNetv2 are the three pre-trained architectures which are compared. These models were used to perform bone fracture classification as images were progressively degraded using noise. This paper specifically empirically studies how the noise can affect the bone fractures detection and how the pre-trained models performance can be changes due to the noise that affect the quality of the X-ray images. This paper aims to help replicate real world challenges experienced by medical imaging technicians across the world. Thus, this paper establishes a methodological framework for assessing AI model degradation using transfer learning and controlled noise augmentation. The findings provide practical insight into how robust and generalizable different pre-trained deep learning powered computer vision models can be when used in different contexts.

Ensemble of Weak Spectral Total Variation Learners: a PET-CT Case Study

Anna Rosenberg, John Kennedy, Zohar Keidar, Yehoshua Y. Zeevi, Guy Gilboa

arxiv logopreprintJul 11 2025
Solving computer vision problems through machine learning, one often encounters lack of sufficient training data. To mitigate this we propose the use of ensembles of weak learners based on spectral total-variation (STV) features (Gilboa 2014). The features are related to nonlinear eigenfunctions of the total-variation subgradient and can characterize well textures at various scales. It was shown (Burger et-al 2016) that, in the one-dimensional case, orthogonal features are generated, whereas in two-dimensions the features are empirically lowly correlated. Ensemble learning theory advocates the use of lowly correlated weak learners. We thus propose here to design ensembles using learners based on STV features. To show the effectiveness of this paradigm we examine a hard real-world medical imaging problem: the predictive value of computed tomography (CT) data for high uptake in positron emission tomography (PET) for patients suspected of skeletal metastases. The database consists of 457 scans with 1524 unique pairs of registered CT and PET slices. Our approach is compared to deep-learning methods and to Radiomics features, showing STV learners perform best (AUC=0.87), compared to neural nets (AUC=0.75) and Radiomics (AUC=0.79). We observe that fine STV scales in CT images are especially indicative for the presence of high uptake in PET.
Page 1 of 65644 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.