Sort by:
Page 1 of 48471 results
Next

Beam Hardening Correction in Clinical X-ray Dark-Field Chest Radiography using Deep Learning-Based Bone Segmentation

Lennard Kaster, Maximilian E. Lochschmidt, Anne M. Bauer, Tina Dorosti, Sofia Demianova, Thomas Koehler, Daniela Pfeiffer, Franz Pfeiffer

arxiv logopreprintAug 14 2025
Dark-field radiography is a novel X-ray imaging modality that enables complementary diagnostic information by visualizing the microstructural properties of lung tissue. Implemented via a Talbot-Lau interferometer integrated into a conventional X-ray system, it allows simultaneous acquisition of perfectly temporally and spatially registered attenuation-based conventional and dark-field radiographs. Recent clinical studies have demonstrated that dark-field radiography outperforms conventional radiography in diagnosing and staging pulmonary diseases. However, the polychromatic nature of medical X-ray sources leads to beam-hardening, which introduces structured artifacts in the dark-field radiographs, particularly from osseous structures. This so-called beam-hardening-induced dark-field signal is an artificial dark-field signal and causes undesired cross-talk between attenuation and dark-field channels. This work presents a segmentation-based beam-hardening correction method using deep learning to segment ribs and clavicles. Attenuation contribution masks derived from dual-layer detector computed tomography data, decomposed into aluminum and water, were used to refine the material distribution estimation. The method was evaluated both qualitatively and quantitatively on clinical data from healthy subjects and patients with chronic obstructive pulmonary disease and COVID-19. The proposed approach reduces bone-induced artifacts and improves the homogeneity of the lung dark-field signal, supporting more reliable visual and quantitative assessment in clinical dark-field chest radiography.

GNN-based Unified Deep Learning

Furkan Pala, Islem Rekik

arxiv logopreprintAug 14 2025
Deep learning models often struggle to maintain generalizability in medical imaging, particularly under domain-fracture scenarios where distribution shifts arise from varying imaging techniques, acquisition protocols, patient populations, demographics, and equipment. In practice, each hospital may need to train distinct models - differing in learning task, width, and depth - to match local data. For example, one hospital may use Euclidean architectures such as MLPs and CNNs for tabular or grid-like image data, while another may require non-Euclidean architectures such as graph neural networks (GNNs) for irregular data like brain connectomes. How to train such heterogeneous models coherently across datasets, while enhancing each model's generalizability, remains an open problem. We propose unified learning, a new paradigm that encodes each model into a graph representation, enabling unification in a shared graph learning space. A GNN then guides optimization of these unified models. By decoupling parameters of individual models and controlling them through a unified GNN (uGNN), our method supports parameter sharing and knowledge transfer across varying architectures (MLPs, CNNs, GNNs) and distributions, improving generalizability. Evaluations on MorphoMNIST and two MedMNIST benchmarks - PneumoniaMNIST and BreastMNIST - show that unified learning boosts performance when models are trained on unique distributions and tested on mixed ones, demonstrating strong robustness to unseen data with large distribution shifts. Code and benchmarks: https://github.com/basiralab/uGNN

Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis.

Jiang Y, Lemarechal Y, Bafaro J, Abi-Rjeile J, Joubert P, Despres P, Manem V

pubmed logopapersAug 14 2025
With the rapid development of artificial intelligence (AI), AI-assisted medical imaging analysis demonstrates remarkable performance in early lung cancer screening. However, the costly annotation process and privacy concerns limit the construction of large-scale medical datasets, hampering the further application of AI in healthcare. To address the data scarcity in lung cancer screening, we propose Lung-DDPM, a thoracic CT image synthesis approach that effectively generates high-fidelity 3D synthetic CT images, which prove helpful in downstream lung nodule segmentation tasks. Our method is based on semantic layout-guided denoising diffusion probabilistic models (DDPM), enabling anatomically reasonable, seamless, and consistent sample generation even from incomplete semantic layouts. Our results suggest that the proposed method outperforms other state-of-the-art (SOTA) generative models in image quality evaluation and downstream lung nodule segmentation tasks. Specifically, Lung-DDPM achieved superior performance on our large validation cohort, with a Fréchet inception distance (FID) of 0.0047, maximum mean discrepancy (MMD) of 0.0070, and mean squared error (MSE) of 0.0024. These results were 7.4×, 3.1×, and 29.5× better than the second-best competitors, respectively. Furthermore, the lung nodule segmentation model, trained on a dataset combining real and Lung-DDPM-generated synthetic samples, attained a Dice Coefficient (Dice) of 0.3914 and sensitivity of 0.4393. This represents 8.8% and 18.6% improvements in Dice and sensitivity compared to the model trained solely on real samples. The experimental results highlight Lung-DDPM's potential for a broader range of medical imaging applications, such as general tumor segmentation, cancer survival estimation, and risk prediction. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM/.

Comparative evaluation of supervised and unsupervised deep learning strategies for denoising hyperpolarized <sup>129</sup>Xe lung MRI.

Bdaiwi AS, Willmering MM, Hussain R, Hysinger E, Woods JC, Walkup LL, Cleveland ZI

pubmed logopapersAug 14 2025
Reduced signal-to-noise ratio (SNR) in hyperpolarized <sup>129</sup>Xe MR images can affect accurate quantification for research and diagnostic evaluations. Thus, this study explores the application of supervised deep learning (DL) denoising, traditional (Trad) and Noise2Noise (N2N) and unsupervised Noise2void (N2V) approaches for <sup>129</sup>Xe MR imaging. The DL denoising frameworks were trained and tested on 952 <sup>129</sup>Xe MRI data sets (421 ventilation, 125 diffusion-weighted, and 406 gas-exchange acquisitions) from healthy subjects and participants with cardiopulmonary conditions and compared with the block matching 3D denoising technique. Evaluation involved mean signal, noise standard deviation (SD), SNR, and sharpness. Ventilation defect percentage (VDP), apparent diffusion coefficient (ADC), membrane uptake, red blood cell (RBC) transfer, and RBC:Membrane were also evaluated for ventilation, diffusion, and gas-exchange images, respectively. Denoising methods significantly reduced noise SDs and enhanced SNR (p < 0.05) across all imaging types. Traditional ventilation model (Trad<sub>vent</sub>) improved sharpness in ventilation images but underestimated VDP (bias = -1.37%) relative to raw images, whereas N2N<sub>vent</sub> overestimated VDP (bias = +1.88%). Block matching 3D and N2V<sub>vent</sub> showed minimal VDP bias (≤ 0.35%). Denoising significantly reduced ADC mean and SD (p < 0.05, bias ≤ - 0.63 × 10<sup>-2</sup>). The values of Trad<sub>vent</sub> and N2N<sub>vent</sub> increased mean membrane and RBC (p < 0.001) with no change in RBC:Membrane. Denoising also reduced SDs of all gas-exchange metrics (p < 0.01). Low SNR may impair the potential of <sup>129</sup>Xe MRI for clinical diagnosis and lung function assessment. The evaluation of supervised and unsupervised DL denoising methods enhanced <sup>129</sup>Xe imaging quality, offering promise for improved clinical interpretation and diagnosis.

MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography

Daniel Barco, Marc Stadelmann, Martin Oswald, Ivo Herzig, Lukas Lichtensteiger, Pascal Paysan, Igor Peterlik, Michal Walczak, Bjoern Menze, Frank-Peter Schilling

arxiv logopreprintAug 13 2025
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.

NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation

Devvrat Joshi, Islem Rekik

arxiv logopreprintAug 13 2025
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.

Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks

Nishan Rai, Sujan Khatri, Devendra Risal

arxiv logopreprintAug 13 2025
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.

GazeLT: Visual attention-guided long-tailed disease classification in chest radiographs

Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, Prateek Prasanna

arxiv logopreprintAug 13 2025
In this work, we present GazeLT, a human visual attention integration-disintegration approach for long-tailed disease classification. A radiologist's eye gaze has distinct patterns that capture both fine-grained and coarser level disease related information. While interpreting an image, a radiologist's attention varies throughout the duration; it is critical to incorporate this into a deep learning framework to improve automated image interpretation. Another important aspect of visual attention is that apart from looking at major/obvious disease patterns, experts also look at minor/incidental findings (few of these constituting long-tailed classes) during the course of image interpretation. GazeLT harnesses the temporal aspect of the visual search process, via an integration and disintegration mechanism, to improve long-tailed disease classification. We show the efficacy of GazeLT on two publicly available datasets for long-tailed disease classification, namely the NIH-CXR-LT (n=89237) and the MIMIC-CXR-LT (n=111898) datasets. GazeLT outperforms the best long-tailed loss by 4.1% and the visual attention-based baseline by 21.7% in average accuracy metrics for these datasets. Our code is available at https://github.com/lordmoinak1/gazelt.

Lung-DDPM+: Efficient Thoracic CT Image Synthesis using Diffusion Probabilistic Model

Yifan Jiang, Ahmad Shariftabrizi, Venkata SK. Manem

arxiv logopreprintAug 12 2025
Generative artificial intelligence (AI) has been playing an important role in various domains. Leveraging its high capability to generate high-fidelity and diverse synthetic data, generative AI is widely applied in diagnostic tasks, such as lung cancer diagnosis using computed tomography (CT). However, existing generative models for lung cancer diagnosis suffer from low efficiency and anatomical imprecision, which limit their clinical applicability. To address these drawbacks, we propose Lung-DDPM+, an improved version of our previous model, Lung-DDPM. This novel approach is a denoising diffusion probabilistic model (DDPM) guided by nodule semantic layouts and accelerated by a pulmonary DPM-solver, enabling the method to focus on lesion areas while achieving a better trade-off between sampling efficiency and quality. Evaluation results on the public LIDC-IDRI dataset suggest that the proposed method achieves 8$\times$ fewer FLOPs (floating point operations per second), 6.8$\times$ lower GPU memory consumption, and 14$\times$ faster sampling compared to Lung-DDPM. Moreover, it maintains comparable sample quality to both Lung-DDPM and other state-of-the-art (SOTA) generative models in two downstream segmentation tasks. We also conducted a Visual Turing Test by an experienced radiologist, showing the advanced quality and fidelity of synthetic samples generated by the proposed method. These experimental results demonstrate that Lung-DDPM+ can effectively generate high-quality thoracic CT images with lung nodules, highlighting its potential for broader applications, such as general tumor synthesis and lesion generation in medical imaging. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM-PLUS.

The association of symptoms, pulmonary function test and computed tomography in interstitial lung disease at the onset of connective tissue disease: an observational study with artificial intelligence analysis of high-resolution computed tomography.

Hoffmann T, Teichgräber U, Brüheim LB, Lassen-Schmidt B, Renz D, Weise T, Krämer M, Oelzner P, Böttcher J, Güttler F, Wolf G, Pfeil A

pubmed logopapersAug 12 2025
Interstitial lung disease (ILD) is a common and serious organ manifestation in patients with connective tissue disease (CTD), but it is uncertain whether there is a difference in ILD between symptomatic and asymptomatic patients. Therefore, we conducted a study to evaluate differences in the extent of ILD based on radiological findings between symptomatic/asymptomatic patients, using an artificial intelligence (AI)-based quantification of pulmonary high-resolution computed tomography (AIpqHRCT). Within the study, 67 cross-sectional HRCT datasets and clinical data (including pulmonary function test) of consecutively patients (mean age: 57.1 ± 14.7 years, woman n = 45; 67.2%) with both, initial diagnosis of CTD, with systemic sclerosis being the most frequent (n = 21, 31.3%), and ILD (all without immunosuppressive therapy), were analysed using AIqpHRCT. 25.4% (n = 17) of the patients with ILD at initial diagnosis of CTD had no pulmonary symptoms. Regarding the baseline characteristics (age, gender, disease), there were no significant difference between the symptomatic and asymptomatic group. The pulmonary function test (PFT) revealed the following mean values (%predicted) in the symptomatic and asymptomatic group, respectively: Forced vital capacity (FVC) 69.4 ± 17.4% versus 86.1 ± 15.8% (p = 0.001), and diffusing capacity of the lung for carbon monoxide (DLCO) 49.7 ± 17.9% versus 60.0 ± 15.8% (p = 0.043). AIqpHRCT data showed a significant higher amount of high attenuated volume (HAV) (14.8 ± 11.0% versus 8.9 ± 3.9%; p = 0.021) and reticulations (5.4 ± 8.7% versus 1.4 ± 1.5%; p = 0.035) in symptomatic patients. A quarter of patients with ILD at the time of initial CTD diagnosis had no pulmonary symptoms, showing DLCO were reduced in both groups. Also, AIqpHRCT demonstrated clinically relevant ILD in asymptomatic patients. These results underline the importance of an early risk adapted screening for ILD also in asymptomatic CTD patients, as ILD is associated with increased mortality.
Page 1 of 48471 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.