Sort by:
Page 84 of 2252246 results

Magnetic resonance imaging and the evaluation of vestibular schwannomas: a systematic review

Lee, K. S., Wijetilake, N., Connor, S., Vercauteren, T., Shapey, J.

medrxiv logopreprintJun 6 2025
IntroductionThe assessment of vestibular schwannoma (VS) requires a standardized measurement approach as growth is a key element in defining treatment strategy for VS. Volumetric measurements offer higher sensitivity and precision, but existing methods of segmentation, are labour-intensive, lack standardisation and are prone to variability and subjectivity. A new core set of measurement indicators reported consistently, will support clinical decision-making and facilitate evidence synthesis. This systematic review aimed to identify indicators used in 1) magnetic resonance imaging (MRI) acquisition and 2) measurement or 3) growth of VS. This work is expected to inform a Delphi consensus. MethodsSystematic searches of Medline, Embase and Cochrane Central were undertaken on 4th October 2024. Studies that assessed the evaluation of VS with MRI, between 2014 and 2024 were included. ResultsThe final dataset consisted of 102 studies and 19001 patients. Eighty-six (84.3%) studies employed post contrast T1 as the MRI acquisition of choice for evaluating VS. Nine (8.8%) studies additionally employed heavily weighted T2 sequences such as constructive interference in steady state (CISS) and FIESTA-C. Only 45 (44.1%) studies reported the slice thickness with the majority 38 (84.4%) choosing <3mm in thickness. Fifty-eight (56.8%) studies measured volume whilst 49 (48.0%) measured the largest linear dimension; 14 (13.7%) studies used both measurements. Four studies employed semi-automated or automated segmentation processes to measure the volumes of VS. Of 68 studies investigating growth, 54 (79.4%) provided a threshold. Significant variation in volumetric growth was observed but the threshold for significant percentage change reported by most studies was 20% (n = 18). ConclusionSubstantial variation in MRI acquisition, and methods for evaluating measurement and growth of VS, exists across the literature. This lack of standardization is likely attributed to resource constraints and the fact that currently available volumetric segmentation methods are very labour-intensive. Following the identification of the indicators employed in the literature, this study aims to develop a Delphi consensus for the standardized measurement of VS and uptake in employing a data-driven artificial intelligence-based measuring tools.

Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts

Mertens, C. J., Haentze, H., Ziegelmayer, S., Kather, J. N., Truhn, D., Kim, S. H., Busch, F., Weller, D., Wiestler, B., Graf, M., Bamberg, F., Schlett, C. L., Weiss, J. B., Ringhof, S., Can, E., Schulz-Menger, J., Niendorf, T., Lammert, J., Molwitz, I., Kader, A., Hering, A., Meddeb, A., Nawabi, J., Schulze, M. B., Keil, T., Willich, S. N., Krist, L., Hadamitzky, M., Hannemann, A., Bassermann, F., Rueckert, D., Pischon, T., Hapfelmeier, A., Makowski, M. R., Bressem, K. K., Adams, L. C.

medrxiv logopreprintJun 6 2025
Body mass index (BMI) does not account for substantial inter-individual differences in regional fat and muscle compartments, which are relevant for the prevalence of cardiometabolic and cancer conditions. We applied a validated deep learning pipeline for automated segmentation of whole-body MRI scans in 45,851 adults from the UK Biobank and German National Cohort, enabling harmonized quantification of visceral (VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions were evaluated using compartment measures adjusted for age, sex, height, and BMI. Our analysis demonstrates that regional adiposity and muscle volume show distinct associations with cardiometabolic and cancer prevalence, and that substantial disease heterogeneity exists within BMI strata. The analytic framework and reference data presented here will support future risk stratification efforts and facilitate the integration of automated MRI phenotyping into large-scale population and clinical research.

Detecting neurodegenerative changes in glaucoma using deep mean kurtosis-curve-corrected tractometry

Kasa, L. W., Schierding, W., Kwon, E., Holdsworth, S., Danesh-Meyer, H. V.

medrxiv logopreprintJun 6 2025
Glaucoma is increasingly recognized as a neurodegenerative condition involving both retinal and central nervous system structures. Here, we present an integrated framework that combines MK-Curve-corrected diffusion kurtosis imaging (DKI), tractometry, and deep autoencoder-based normative modeling to detect localized white matter abnormalities associated with glaucoma. Using UK Biobank diffusion MRI data, we show that MK-Curve approach corrects anatomically implausible values and improves the reliability of DKI metrics - particularly mean (MK), radial (RK), and axial kurtosis (AK) - in regions of complex fiber architecture. Tractometry revealed reduced MK in glaucoma patients along the optic radiation, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus, but not in a non-visual control tract, supporting disease specificity. These abnormalities were spatially localized, with significant changes observed at multiple points along the tracts. MK demonstrated greater sensitivity than MD and exhibited altered distributional features, reflecting microstructural heterogeneity not captured by standard metrics. Node-wise MK values in the right optic radiation showed weak but significant correlations with retinal OCT measures (ganglion cell layer and retinal nerve fiber layer thickness), reinforcing the biological relevance of these findings. Deep autoencoder-based modeling further enabled subject-level anomaly detection that aligned spatially with group-level changes and outperformed traditional approaches. Together, our results highlight the potential of advanced diffusion modeling and deep learning for sensitive, individualized detection of glaucomatous neurodegeneration and support their integration into future multimodal imaging pipelines in neuro-ophthalmology.

Clinically Interpretable Deep Learning via Sparse BagNets for Epiretinal Membrane and Related Pathology Detection

Ofosu Mensah, S., Neubauer, J., Ayhan, M. S., Djoumessi Donteu, K. R., Koch, L. M., Uzel, M. M., Gelisken, F., Berens, P.

medrxiv logopreprintJun 6 2025
Epiretinal membrane (ERM) is a vitreoretinal interface disease that, if not properly addressed, can lead to vision impairment and negatively affect quality of life. For ERM detection and treatment planning, Optical Coherence Tomography (OCT) has become the primary imaging modality, offering non-invasive, high-resolution cross-sectional imaging of the retina. Deep learning models have also led to good ERM detection performance on OCT images. Nevertheless, most deep learning models cannot be easily understood by clinicians, which limits their acceptance in clinical practice. Post-hoc explanation methods have been utilised to support the uptake of models, albeit, with partial success. In this study, we trained a sparse BagNet model, an inherently interpretable deep learning model, to detect ERM in OCT images. It performed on par with a comparable black-box model and generalised well to external data. In a multitask setting, it also accurately predicted other changes related to the ERM pathophysiology. Through a user study with ophthalmologists, we showed that the visual explanations readily provided by the sparse BagNet model for its decisions are well-aligned with clinical expertise. We propose potential directions for clinical implementation of the sparse BagNet model to guide clinical decisions in practice.

[Albumin-myoestatosis gauge assisted by an artificial intelligence tool as a prognostic factor in patients with metastatic colorectal-cancer].

de Luis Román D, Primo D, Izaola Jáuregui O, Sánchez Lite I, López Gómez JJ

pubmed logopapersJun 6 2025
to evaluate the prognostic role of the marker albumin-myosteatosis (MAM) in Caucasian patients with metastatic colorectal cancer. this study involved 55 consecutive Caucasian patients diagnosed with metastatic colorectal cancer. CT scans at the L3 vertebral level were analyzed to determine skeletal muscle cross-sectional area, skeletal muscle index (SMI), and skeletal muscle density (SMD). Bioelectrical impedance analysis (BIA) (phase angle, reactance, resistance, and SMI-BIA) was used. Albumin and prealbumin were measured. The albumin-myosteatosis marker (AMM = serum albumin (g/dL) × skeletal muscle density (SMD) in Hounsfield units (HU) was calculated. Survival was estimated using the Kaplan-Meier method and comparisons between groups were performed using the log-rank test. the median age was 68.1 ± 9.1 years. Patients were divided into two groups based on the median MAM (129.1 AU for women and 156.3 AU for men). Patients in the low MAM group had significantly reduced values of phase angle and reactance, as well as older age. These patients also had higher rates of malnutrition by GLIM criteria (odds ratio: 3.8; 95 % CI = 1.2-12.9), low muscle mass diagnosed with TC (odds ratio: 3.6; 95 % CI = 1.2-10.9) and mortality (odds ratio: 9.82; 95 % CI = 1.2-10.9). The Kaplan-Meir analysis demonstrated significant differences in 5-year survival between MAM groups (patients in the low median MAM group vs. patients in the high median MAM group), (HR: 6.2; 95 % CI = 1.10-37.5). the marker albumin-myosteatosis (MAM) may function as a prognostic marker of survival in Caucasian patients with metastatic CRC.

Research on ischemic stroke risk assessment based on CTA radiomics and machine learning.

Li ZL, Yang HY, Lv XX, Zhang YK, Zhu XY, Zhang YR, Guo L

pubmed logopapersJun 5 2025
The study explores the value of a model constructed by integrating CTA-based carotid plaque radiomic features, clinical risk factors, and plaque imaging characteristics for prognosticating the risk of ischemic stroke. Data from 123 patients with carotid atherosclerosis were analyzed and divided into stroke and asymptomatic groups based on DWI findings. Clinical information was collected, and plaque imaging characteristics were assessed to construct a traditional model. Radiomic features of carotid plaques were extracted using 3D-Slicer software to build a radiomics model. Logistic regression was applied in the training set to establish the traditional model, the radiomics model, and a combined model, which were then tested in the validation set. The prognostic ability of the three models for ischemic stroke was evaluated using ROC curves, while calibration curves, decision curve analysis, and clinical impact curves were used to assess the clinical utility of the models. Differences in AUC values between models were compared using the DeLong test. Hypertension, diabetes, elevated homocysteine (Hcy) concentrations, and plaque burden are independent risk factors for ischemic stroke and were used to establish the traditional model. Through Lasso regression, nine optimal features were selected to construct the radiomics model. ROC curve analysis showed that the AUC values of the three Logistic regression models were 0.766, 0.766, and 0.878 in the training set, and 0.798, 0.801, and 0.847 in the validation set. Calibration curves and decision curve analysis showed that the radiomics model and the combined model had higher accuracy and better fit in prognosticating the risk of ischemic stroke. The radiomics model is slightly better than the traditional model in evaluating the risk of ischemic stroke, while the combined model has the best prognostic performance.

Quantitative and automatic plan-of-the-day assessment to facilitate adaptive radiotherapy in cervical cancer.

Mason SA, Wang L, Alexander SE, Lalondrelle S, McNair HA, Harris EJ

pubmed logopapersJun 5 2025
To facilitate implementation of plan-of-the-day (POTD) selection for treating locally advanced cervical cancer (LACC), we developed a POTD assessment tool for CBCT-guided radiotherapy (RT). A female pelvis segmentation model (U-Seg3) is combined with a quantitative standard operating procedure (qSOP) to identify optimal and acceptable plans. &#xD;&#xD;Approach: The planning CT[i], corresponding structure set[ii], and manually contoured CBCTs[iii] (n=226) from 39 LACC patients treated with POTD (n=11) or non-adaptive RT (n=28) were used to develop U-Seg3, an algorithm incorporating deep-learning and deformable image registration techniques to segment the low-risk clinical target volume (LR-CTV), high-risk CTV (HR-CTV), bladder, rectum, and bowel bag. A single-channel input model (iii only, U-Seg1) was also developed. Contoured CBCTs from the POTD patients were (a) reserved for U-Seg3 validation/testing, (b) audited to determine optimal and acceptable plans, and (c) used to empirically derive a qSOP that maximised classification accuracy. &#xD;&#xD;Main Results: The median [interquartile range] DSC between manual and U-Seg3 contours was 0.83 [0.80], 0.78 [0.13], 0.94 [0.05], 0.86[0.09], and 0.90 [0.05] for the LR-CTV, HR-CTV, bladder, rectum, and bowel bag. These were significantly higher than U-Seg1 in all structures but bladder. The qSOP classified plans as acceptable if they met target coverage thresholds (LR-CTV≧99%, HR-CTV≧99.8%), with lower LR-CTV coverage (≧95%) sometimes allowed. The acceptable plan minimising bowel irradiation was considered optimal unless substantial bladder sparing could be achieved. With U-Seg3 embedded in the qSOP, optimal and acceptable plans were identified in 46/60 and 57/60 cases. &#xD;&#xD;Significance: U-Seg3 outperforms U-Seg1 and all known CBCT-based female pelvis segmentation models. The tool combining U-Seg3 and the qSOP identifies optimal plans with equivalent accuracy as two observers. In an implementation strategy whereby this tool serves as the second observer, plan selection confidence and decision-making time could be improved whilst simultaneously reducing the required number of POTD-trained radiographers by 50%.&#xD;&#xD;&#xD.

High-definition motion-resolved MRI using 3D radial kooshball acquisition and deep learning spatial-temporal 4D reconstruction.

Murray V, Wu C, Otazo R

pubmed logopapersJun 5 2025
&#xD;To develop motion-resolved volumetric MRI with 1.1mm isotropic resolution and scan times <5 minutes using a combination of 3D radial kooshball acquisition and spatial-temporal deep learning 4D reconstruction for free-breathing high-definition lung MRI. &#xD;Approach: &#xD;Free-breathing lung MRI was conducted on eight healthy volunteers and ten patients with lung tumors on a 3T MRI scanner using a 3D radial kooshball sequence with half-spoke (ultrashort echo time, UTE, TE=0.12ms) and full-spoke (T1-weighted, TE=1.55ms) acquisitions. Data were motion-sorted using amplitude-binning on a respiratory motion signal. Two high-definition Movienet (HD-Movienet) deep learning models were proposed to reconstruct 3D radial kooshball data: slice-by-slice reconstruction in the coronal orientation using 2D convolutional kernels (2D-based HD-Movienet) and reconstruction on blocks of eight coronal slices using 3D convolutional kernels (3D-based HD-Movienet). Two applications were considered: (a) anatomical imaging at expiration and inspiration with four motion states and a scan time of 2 minutes, and (b) dynamic motion imaging with 10 motion states and a scan time of 4 minutes. The training was performed using XD-GRASP 4D images reconstructed from 4.5-minute and 6.5-minute acquisitions as references. &#xD;Main Results: &#xD;2D-based HD-Movienet achieved a reconstruction time of <6 seconds, significantly faster than the iterative XD-GRASP reconstruction (>10 minutes with GPU optimization) while maintaining comparable image quality to XD-GRASP with two extra minutes of scan time. The 3D-based HD-Movienet improved reconstruction quality at the expense of longer reconstruction times (<11 seconds). &#xD;Significance: &#xD;HD-Movienet demonstrates the feasibility of motion-resolved 4D MRI with isotropic 1.1mm resolution and scan times of only 2 minutes for four motion states and 4 minutes for 10 motion states, marking a significant advancement in clinical free-breathing lung MRI.

StrokeNeXt: an automated stroke classification model using computed tomography and magnetic resonance images.

Ekingen E, Yildirim F, Bayar O, Akbal E, Sercek I, Hafeez-Baig A, Dogan S, Tuncer T

pubmed logopapersJun 5 2025
Stroke ranks among the leading causes of disability and death worldwide. Timely detection can reduce its impact. Machine learning delivers powerful tools for image‑based diagnosis. This study introduces StrokeNeXt, a lightweight convolutional neural network (CNN) for computed tomography (CT) and magnetic resonance (MR) scans, and couples it with deep feature engineering (DFE) to improve accuracy and facilitate clinical deployment. We assembled a multimodal dataset of CT and MR images, each labeled as stroke or control. StrokeNeXt employs a ConvNeXt‑inspired block and a squeeze‑and‑excitation (SE) unit across four stages: stem, StrokeNeXt block, downsampling, and output. In the DFE pipeline, StrokeNeXt extracts features from fixed‑size patches, iterative neighborhood component analysis (INCA) selects the top features, and a t algorithm-based k-nearest neighbors (tkNN) classifier has been utilized for classification. StrokeNeXt achieved 93.67% test accuracy on the assembled dataset. Integrating DFE raised accuracy to 97.06%. This combined approach outperformed StrokeNeXt alone and reduced classification time. StrokeNeXt paired with DFE offers an effective solution for stroke detection on CT and MR images. Its high accuracy and fewer learnable parameters make it lightweight and it is suitable for integration into clinical workflows. This research lays a foundation for real‑time decision support in emergency and radiology settings.

Association between age and lung cancer risk: evidence from lung lobar radiomics.

Li Y, Lin C, Cui L, Huang C, Shi L, Huang S, Yu Y, Zhou X, Zhou Q, Chen K, Shi L

pubmed logopapersJun 5 2025
Previous studies have highlighted the prominent role of age in lung cancer risk, with signs of lung aging visible in computed tomography (CT) imaging. This study aims to characterize lung aging using quantitative radiomic features extracted from five delineated lung lobes and explore how age contributes to lung cancer development through these features. We analyzed baseline CT scans from the Wenling lung cancer screening cohort, consisting of 29,810 participants. Deep learning-based segmentation method was used to delineate lung lobes. A total of 1,470 features were extracted from each lobe. The minimum redundancy maximum relevance algorithm was applied to identify the top 10 age-related radiomic features among 13,137 never smokers. Multiple regression analyses were used to adjust for confounders in the association of age, lung lobar radiomic features, and lung cancer. Linear, Cox proportional hazards, and parametric accelerated failure time models were applied as appropriate. Mediation analyses were conducted to evaluate whether lobar radiomic features mediate the relationship between age and lung cancer risk. Age was significantly associated with an increased lung cancer risk, particularly among current smokers (hazard ratio = 1.07, P = 2.81 × 10<sup>- 13</sup>). Age-related radiomic features exhibited distinct effects across lung lobes. Specifically, the first order mean (mean attenuation value) filtered by wavelet in the right upper lobe increased with age (β = 0.019, P = 2.41 × 10<sup>- 276</sup>), whereas it decreased in the right lower lobe (β = -0.028, P = 7.83 × 10<sup>- 277</sup>). Three features, namely wavelet_HL_firstorder_Mean of the right upper lobe, wavelet_LH_firstorder_Mean of the right lower lobe, and original_shape_MinorAxisLength of the left upper lobe, were independently associated with lung cancer risk at Bonferroni-adjusted P value. Mediation analyses revealed that density and shape features partially mediated the relationship between age and lung cancer risk while a suppression effect was observed in the wavelet first order mean of right upper lobe. The study reveals lobe-specific heterogeneity in lung aging patterns through radiomics and their associations with lung cancer risk. These findings may contribute to identify new approaches for early intervention in lung cancer related to aging. Not applicable.
Page 84 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.