An Institutional Large Language Model for Musculoskeletal MRI Improves Protocol Adherence and Accuracy.
Patrick Decourcy Hallinan JT, Leow NW, Low YX, Lee A, Ong W, Zhou Chan MD, Devi GK, He SS, De-Liang Loh D, Wei Lim DS, Low XZ, Teo EC, Furqan SM, Yang Tham WW, Tan JH, Kumar N, Makmur A, Yonghan T
•papers•Jul 8 2025Privacy-preserving large language models (PP-LLMs) hold potential for assisting clinicians with documentation. We evaluated a PP-LLM to improve the clinical information on radiology request forms for musculoskeletal magnetic resonance imaging (MRI) and to automate protocoling, which ensures that the most appropriate imaging is performed. The present retrospective study included musculoskeletal MRI radiology request forms that had been randomly collected from June to December 2023. Studies without electronic medical record (EMR) entries were excluded. An institutional PP-LLM (Claude Sonnet 3.5) augmented the original radiology request forms by mining EMRs, and, in combination with rule-based processing of the LLM outputs, suggested appropriate protocols using institutional guidelines. Clinical information on the original and PP-LLM radiology request forms were compared with use of the RI-RADS (Reason for exam Imaging Reporting and Data System) grading by 2 musculoskeletal (MSK) radiologists independently (MSK1, with 13 years of experience, and MSK2, with 11 years of experience). These radiologists established a consensus reference standard for protocoling, against which the PP-LLM and of 2 second-year board-certified radiologists (RAD1 and RAD2) were compared. Inter-rater reliability was assessed with use of the Gwet AC1, and the percentage agreement with the reference standard was calculated. Overall, 500 musculoskeletal MRI radiology request forms were analyzed for 407 patients (202 women and 205 men with a mean age [and standard deviation] of 50.3 ± 19.5 years) across a range of anatomical regions, including the spine/pelvis (143 MRI scans; 28.6%), upper extremity (169 scans; 33.8%) and lower extremity (188 scans; 37.6%). Two hundred and twenty-two (44.4%) of the 500 MRI scans required contrast. The clinical information provided in the PP-LLM-augmented radiology request forms was rated as superior to that in the original requests. Only 0.4% to 0.6% of PP-LLM radiology request forms were rated as limited/deficient, compared with 12.4% to 22.6% of the original requests (p < 0.001). Almost-perfect inter-rater reliability was observed for LLM-enhanced requests (AC1 = 0.99; 95% confidence interval [CI], 0.99 to 1.0), compared with substantial agreement for the original forms (AC1 = 0.62; 95% CI, 0.56 to 0.67). For protocoling, MSK1 and MSK2 showed almost-perfect agreement on the region/coverage (AC1 = 0.96; 95% CI, 0.95 to 0.98) and contrast requirement (AC1 = 0.98; 95% CI, 0.97 to 0.99). Compared with the consensus reference standard, protocoling accuracy for the PP-LLM was 95.8% (95% CI, 94.0% to 97.6%), which was significantly higher than that for both RAD1 (88.6%; 95% CI, 85.8% to 91.4%) and RAD2 (88.2%; 95% CI, 85.4% to 91.0%) (p < 0.001 for both). Musculoskeletal MRI request form augmentation with an institutional LLM provided superior clinical information and improved protocoling accuracy compared with clinician requests and non-MSK-trained radiologists. Institutional adoption of such LLMs could enhance the appropriateness of MRI utilization and patient care. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.