Sort by:
Page 86 of 3993982 results

Facilitators and Barriers to Implementing AI in Routine Medical Imaging: Systematic Review and Qualitative Analysis.

Wenderott K, Krups J, Weigl M, Wooldridge AR

pubmed logopapersJul 21 2025
Artificial intelligence (AI) is rapidly advancing in health care, particularly in medical imaging, offering potential for improved efficiency and reduced workload. However, there is little systematic evidence on process factors for successful AI technology implementation into clinical workflows. This study aimed to systematically assess and synthesize the facilitators and barriers to AI implementation reported in studies evaluating AI solutions in routine medical imaging. We conducted a systematic review of 6 medical databases. Using a qualitative content analysis, we extracted the reported facilitators and barriers, outcomes, and moderators in the implementation process of AI. Two reviewers analyzed and categorized the data separately. We then used epistemic network analysis to explore their relationships across different stages of AI implementation. Our search yielded 13,756 records. After screening, we included 38 original studies in our final review. We identified 12 key dimensions and 37 subthemes that influence the implementation of AI in health care workflows. Key dimensions included evaluation of AI use and fit into workflow, with frequency depending considerably on the stage of the implementation process. In total, 20 themes were mentioned as both facilitators and barriers to AI implementation. Studies often focused predominantly on performance metrics over the experiences or outcomes of clinicians. This systematic review provides a thorough synthesis of facilitators and barriers to successful AI implementation in medical imaging. Our study highlights the usefulness of AI technologies in clinical care and the fit of their integration into routine clinical workflows. Most studies did not directly report facilitators and barriers to AI implementation, underscoring the importance of comprehensive reporting to foster knowledge sharing. Our findings reveal a predominant focus on technological aspects of AI adoption in clinical work, highlighting the need for holistic, human-centric consideration to fully leverage the potential of AI in health care. PROSPERO CRD42022303439; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022303439. RR2-10.2196/40485.

Lightweight Network Enhancing High-Resolution Feature Representation for Efficient Low Dose CT Denoising.

Li J, Li Y, Qi F, Wang S, Zhang Z, Huang Z, Yu Z

pubmed logopapersJul 21 2025
Low-dose computed tomography plays a crucial role in reducing radiation exposure in clinical imaging, however, the resultant noise significantly impacts image quality and diagnostic precision. Recent transformer-based models have demonstrated strong denoising capabilities but are often constrained by high computational complexity. To overcome these limitations, we propose AMFA-Net, an adaptive multi-order feature aggregation network that provides a lightweight architecture for enhancing highresolution feature representation in low-dose CT imaging. AMFA-Net effectively integrates local and global contexts within high-resolution feature maps while learning discriminative representations through multi-order context aggregation. We introduce an agent-based self-attention crossshaped window transformer block that efficiently captures global context in high-resolution feature maps, which is subsequently fused with backbone features to preserve critical structural information. Our approach employs multiorder gated aggregation to adaptively guide the network in capturing expressive interactions that may be overlooked in fused features, thereby producing robust representations for denoised image reconstruction. Experiments on two challenging public datasets with 25% and 10% full-dose CT image quality demonstrate that our method surpasses state-of-the-art approaches in denoising performance with low computational cost, highlighting its potential for realtime medical applications.

Fully automated pedicle screw manufacturer identification in plain radiograph with deep learning methods.

Waranusast R, Riyamongkol P, Weerakul S, Chaibhuddanugul N, Laoruengthana A, Mahatthanatrakul A

pubmed logopapersJul 21 2025
Pedicle screw manufacturer identification is crucial for revision surgery planning; however, this information is occasionally unavailable. We developed a deep learning-based algorithm to identify the pedicle screw manufacturer from plain radiographs. We collected anteroposterior (AP) and lateral radiographs from 276 patients who had thoracolumbar spine surgery with pedicle screws from three international manufacturers. The samples were randomly assigned to training sets (178), validation sets (40), and test sets (58). The algorithm incorporated a convolutional neural network (CNN) model to classify the radiograph as AP and lateral, followed by YOLO object detection to locate the pedicle screw. Another CNN classifier model then identified the manufacturer of each pedicle screw in AP and lateral views. The voting scheme determined the final classification. For comparison, two spine surgeons independently evaluated the same test set, and the accuracy was compared. The mean age of the patients was 59.5 years, with 1,887 pedicle screws included. The algorithm achieved a perfect accuracy of 100% for the AP radiograph, 98.9% for the lateral radiograph, and 100% when both views were considered. By comparison, the spine surgeons achieved 97.1% accuracy. Statistical analysis revealed near-perfect agreement between the algorithm and the surgeons. We have successfully developed an algorithm for pedicle screw manufacturer identification, which demonstrated excellent accuracy and was comparable to experienced spine surgeons.

LLM-driven Medical Report Generation via Communication-efficient Heterogeneous Federated Learning.

Che H, Jin H, Gu Z, Lin Y, Jin C, Chen H

pubmed logopapersJul 21 2025
Large Language Models (LLMs) have demonstrated significant potential in Medical Report Generation (MRG), yet their development requires large amounts of medical image-report pairs, which are commonly scattered across multiple centers. Centralizing these data is exceptionally challenging due to privacy regulations, thereby impeding model development and broader adoption of LLM-driven MRG models. To address this challenge, we present FedMRG, the first framework that leverages Federated Learning (FL) to enable privacy-preserving, multi-center development of LLM-driven MRG models, specifically designed to overcome the critical challenge of communication-efficient LLM training under multi-modal data heterogeneity. To start with, our framework tackles the fundamental challenge of communication overhead in federated LLM tuning by employing low-rank factorization to efficiently decompose parameter updates, significantly reducing gradient transmission costs and making LLM-driven MRG feasible in bandwidth-constrained FL settings. Furthermore, we observed the dual heterogeneity in MRG under the FL scenario: varying image characteristics across medical centers, as well as diverse reporting styles and terminology preferences. To address the data heterogeneity, we further enhance FedMRG with (1) client-aware contrastive learning in the MRG encoder, coupled with diagnosis-driven prompts, which capture both globally generalizable and locally distinctive features while maintaining diagnostic accuracy; and (2) a dual-adapter mutual boosting mechanism in the MRG decoder that harmonizes generic and specialized adapters to address variations in reporting styles and terminology. Through extensive evaluation of our established FL-MRG benchmark, we demonstrate the generalizability and adaptability of FedMRG, underscoring its potential in harnessing multi-center data and generating clinically accurate reports while maintaining communication efficiency.

Noninvasive Deep Learning System for Preoperative Diagnosis of Follicular-Like Thyroid Neoplasms Using Ultrasound Images: A Multicenter, Retrospective Study.

Shen H, Huang Y, Yan W, Zhang C, Liang T, Yang D, Feng X, Liu S, Wang Y, Cao W, Cheng Y, Chen H, Ni Q, Wang F, You J, Jin Z, He W, Sun J, Yang D, Liu L, Cao B, Zhang X, Li Y, Pei S, Zhang S, Zhang B

pubmed logopapersJul 21 2025
To propose a deep learning (DL) system for the preoperative diagnosis of follicular-like thyroid neoplasms (FNs) using routine ultrasound images. Preoperative diagnosis of malignancy in nodules suspicious for an FN remains challenging. Ultrasound, fine-needle aspiration cytology, and intraoperative frozen section pathology cannot unambiguously distinguish between benign and malignant FNs, leading to unnecessary biopsies and operations in benign nodules. This multicenter, retrospective study included 3634 patients who underwent ultrasound and received a definite diagnosis of FN from 11 centers, comprising thyroid follicular adenoma (n=1748), follicular carcinoma (n=299), and follicular variant of papillary thyroid carcinoma (n=1587). Four DL models including Inception-v3, ResNet50, Inception-ResNet-v2, and DenseNet161 were constructed on a training set (n=2587, 6178 images) and were verified on an internal validation set (n=648, 1633 images) and an external validation set (n=399, 847 images). The diagnostic efficacy of the DL models was evaluated against the ACR TI-RADS regarding the area under the curve (AUC), sensitivity, specificity, and unnecessary biopsy rate. When externally validated, the four DL models yielded robust and comparable performance, with AUCs of 82.2%-85.2%, sensitivities of 69.6%-76.0%, and specificities of 84.1%-89.2%, which outperformed the ACR TI-RADS. Compared to ACR TI-RADS, the DL models showed a higher biopsy rate of malignancy (71.6% -79.9% vs 37.7%, P<0.001) and a significantly lower unnecessary FNAB rate (8.5% -12.8% vs 40.7%, P<0.001). This study provides a noninvasive DL tool for accurate preoperative diagnosis of FNs, showing better performance than ACR TI-RADS and reducing unnecessary invasive interventions.

Ultra-low dose imaging in a standard axial field-of-view PET.

Lima T, Gomes CV, Fargier P, Strobel K, Leimgruber A

pubmed logopapersJul 21 2025
Though ultra-low dose (ULD) imaging offers notable benefits, its widespread clinical adoption faces challenges. Long-axial field-of-view (LAFOV) PET/CT systems are expensive and scarce, while artificial intelligence (AI) shows great potential but remains largely limited to specific systems and is not yet widely used in clinical practice. However, integrating AI techniques and technological advancements into ULD imaging is helping bridge the gap between standard axial field-of-view (SAFOV) and LAFOV PET/CT systems. This paper offers an initial evaluation of ULD capabilities using one of the latest SAFOV PET/CT device. A patient injected with 16.4 MBq <sup>18</sup>F-FDG underwent a local protocol consisting of a dynamic acquisition (first 30 min) of the abdominal section and a static whole body 74 min post-injection on a GE Omni PET/CT. From the acquired images we computed the dosimetry and compared clinical output from kidney function and brain uptake to kidney model and normal databases, respectively. The effective PET dose for this patient was 0.27 ± 0.01 mSv and the absorbed doses were 0.56 mGy, 0.89 mGy and 0.20 mGy, respectively to the brain, heart, and kidneys. The recorded kidney concentration closely followed the kidney model, matching the increase and decrease in activity concentration over time. Normal values for the z-score were observed for the brain uptake, indicating typical brain function and activity patterns consistent with healthy individuals. The signal to noise ration obtained in this study (13.1) was comparable to the LAFOV reported values. This study shows promising capabilities of ultra-low-dose imaging in SAFOV PET devices, previously deemed unattainable with SAFOV PET imaging.

SegDT: A Diffusion Transformer-Based Segmentation Model for Medical Imaging

Salah Eddine Bekhouche, Gaby Maroun, Fadi Dornaika, Abdenour Hadid

arxiv logopreprintJul 21 2025
Medical image segmentation is crucial for many healthcare tasks, including disease diagnosis and treatment planning. One key area is the segmentation of skin lesions, which is vital for diagnosing skin cancer and monitoring patients. In this context, this paper introduces SegDT, a new segmentation model based on diffusion transformer (DiT). SegDT is designed to work on low-cost hardware and incorporates Rectified Flow, which improves the generation quality at reduced inference steps and maintains the flexibility of standard diffusion models. Our method is evaluated on three benchmarking datasets and compared against several existing works, achieving state-of-the-art results while maintaining fast inference speeds. This makes the proposed model appealing for real-world medical applications. This work advances the performance and capabilities of deep learning models in medical image analysis, enabling faster, more accurate diagnostic tools for healthcare professionals. The code is made publicly available at \href{https://github.com/Bekhouche/SegDT}{GitHub}.

Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation

Ghassen Baklouti, Julio Silva-Rodríguez, Jose Dolz, Houda Bahig, Ismail Ben Ayed

arxiv logopreprintJul 21 2025
Parameter-efficient fine-tuning (PEFT) of pre-trained foundation models is increasingly attracting interest in medical imaging due to its effectiveness and computational efficiency. Among these methods, Low-Rank Adaptation (LoRA) is a notable approach based on the assumption that the adaptation inherently occurs in a low-dimensional subspace. While it has shown good performance, its implementation requires a fixed and unalterable rank, which might be challenging to select given the unique complexities and requirements of each medical imaging downstream task. Inspired by advancements in natural image processing, we introduce a novel approach for medical image segmentation that dynamically adjusts the intrinsic rank during adaptation. Viewing the low-rank representation of the trainable weight matrices as a singular value decomposition, we introduce an l_1 sparsity regularizer to the loss function, and tackle it with a proximal optimizer. The regularizer could be viewed as a penalty on the decomposition rank. Hence, its minimization enables to find task-adapted ranks automatically. Our method is evaluated in a realistic few-shot fine-tuning setting, where we compare it first to the standard LoRA and then to several other PEFT methods across two distinguishable tasks: base organs and novel organs. Our extensive experiments demonstrate the significant performance improvements driven by our method, highlighting its efficiency and robustness against suboptimal rank initialization. Our code is publicly available: https://github.com/ghassenbaklouti/ARENA

The added value for MRI radiomics and deep-learning for glioblastoma prognostication compared to clinical and molecular information

D. Abler, O. Pusterla, A. Joye-Kühnis, N. Andratschke, M. Bach, A. Bink, S. M. Christ, P. Hagmann, B. Pouymayou, E. Pravatà, P. Radojewski, M. Reyes, L. Ruinelli, R. Schaer, B. Stieltjes, G. Treglia, W. Valenzuela, R. Wiest, S. Zoergiebel, M. Guckenberger, S. Tanadini-Lang, A. Depeursinge

arxiv logopreprintJul 21 2025
Background: Radiomics shows promise in characterizing glioblastoma, but its added value over clinical and molecular predictors has yet to be proven. This study assessed the added value of conventional radiomics (CR) and deep learning (DL) MRI radiomics for glioblastoma prognosis (<= 6 vs > 6 months survival) on a large multi-center dataset. Methods: After patient selection, our curated dataset gathers 1152 glioblastoma (WHO 2016) patients from five Swiss centers and one public source. It included clinical (age, gender), molecular (MGMT, IDH), and baseline MRI data (T1, T1 contrast, FLAIR, T2) with tumor regions. CR and DL models were developed using standard methods and evaluated on internal and external cohorts. Sub-analyses assessed models with different feature sets (imaging-only, clinical/molecular-only, combined-features) and patient subsets (S-1: all patients, S-2: with molecular data, S-3: IDH wildtype). Results: The best performance was observed in the full cohort (S-1). In external validation, the combined-feature CR model achieved an AUC of 0.75, slightly, but significantly outperforming clinical-only (0.74) and imaging-only (0.68) models. DL models showed similar trends, though without statistical significance. In S-2 and S-3, combined models did not outperform clinical-only models. Exploratory analysis of CR models for overall survival prediction suggested greater relevance of imaging data: across all subsets, combined-feature models significantly outperformed clinical-only models, though with a modest advantage of 2-4 C-index points. Conclusions: While confirming the predictive value of anatomical MRI sequences for glioblastoma prognosis, this multi-center study found standard CR and DL radiomics approaches offer minimal added value over demographic predictors such as age and gender.

MedSR-Impact: Transformer-Based Super-Resolution for Lung CT Segmentation, Radiomics, Classification, and Prognosis

Marc Boubnovski Martell, Kristofer Linton-Reid, Mitchell Chen, Sumeet Hindocha, Benjamin Hunter, Marco A. Calzado, Richard Lee, Joram M. Posma, Eric O. Aboagye

arxiv logopreprintJul 21 2025
High-resolution volumetric computed tomography (CT) is essential for accurate diagnosis and treatment planning in thoracic diseases; however, it is limited by radiation dose and hardware costs. We present the Transformer Volumetric Super-Resolution Network (\textbf{TVSRN-V2}), a transformer-based super-resolution (SR) framework designed for practical deployment in clinical lung CT analysis. Built from scalable components, including Through-Plane Attention Blocks (TAB) and Swin Transformer V2 -- our model effectively reconstructs fine anatomical details in low-dose CT volumes and integrates seamlessly with downstream analysis pipelines. We evaluate its effectiveness on three critical lung cancer tasks -- lobe segmentation, radiomics, and prognosis -- across multiple clinical cohorts. To enhance robustness across variable acquisition protocols, we introduce pseudo-low-resolution augmentation, simulating scanner diversity without requiring private data. TVSRN-V2 demonstrates a significant improvement in segmentation accuracy (+4\% Dice), higher radiomic feature reproducibility, and enhanced predictive performance (+0.06 C-index and AUC). These results indicate that SR-driven recovery of structural detail significantly enhances clinical decision support, positioning TVSRN-V2 as a well-engineered, clinically viable system for dose-efficient imaging and quantitative analysis in real-world CT workflows.
Page 86 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.