Sort by:
Page 83 of 3993982 results

SFNet: A Spatio-Frequency Domain Deep Learning Network for Efficient Alzheimer's Disease Diagnosis

Xinyue Yang, Meiliang Liu, Yunfang Xu, Xiaoxiao Yang, Zhengye Si, Zijin Li, Zhiwen Zhao

arxiv logopreprintJul 22 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that predominantly affects the elderly population and currently has no cure. Magnetic Resonance Imaging (MRI), as a non-invasive imaging technique, is essential for the early diagnosis of AD. MRI inherently contains both spatial and frequency information, as raw signals are acquired in the frequency domain and reconstructed into spatial images via the Fourier transform. However, most existing AD diagnostic models extract features from a single domain, limiting their capacity to fully capture the complex neuroimaging characteristics of the disease. While some studies have combined spatial and frequency information, they are mostly confined to 2D MRI, leaving the potential of dual-domain analysis in 3D MRI unexplored. To overcome this limitation, we propose Spatio-Frequency Network (SFNet), the first end-to-end deep learning framework that simultaneously leverages spatial and frequency domain information to enhance 3D MRI-based AD diagnosis. SFNet integrates an enhanced dense convolutional network to extract local spatial features and a global frequency module to capture global frequency-domain representations. Additionally, a novel multi-scale attention module is proposed to further refine spatial feature extraction. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ANDI) dataset demonstrate that SFNet outperforms existing baselines and reduces computational overhead in classifying cognitively normal (CN) and AD, achieving an accuracy of 95.1%.

AgentMRI: A Vison Language Model-Powered AI System for Self-regulating MRI Reconstruction with Multiple Degradations.

Sajua GA, Akhib M, Chang Y

pubmed logopapersJul 22 2025
Artificial intelligence (AI)-driven autonomous agents are transforming multiple domains by integrating reasoning, decision-making, and task execution into a unified framework. In medical imaging, such agents have the potential to change workflows by reducing human intervention and optimizing image quality. In this paper, we introduce the AgentMRI. It is an AI-driven system that leverages vision language models (VLMs) for fully autonomous magnetic resonance imaging (MRI) reconstruction in the presence of multiple degradations. Unlike traditional MRI correction or reconstruction methods, AgentMRI does not rely on manual intervention for post-processing or does not rely on fixed correction models. Instead, it dynamically detects MRI corruption and then automatically selects the best correction model for image reconstruction. The framework uses a multi-query VLM strategy to ensure robust corruption detection through consensus-based decision-making and confidence-weighted inference. AgentMRI automatically chooses deep learning models that include MRI reconstruction, motion correction, and denoising models. We evaluated AgentMRI in both zero-shot and fine-tuned settings. Experimental results on a comprehensive brain MRI dataset demonstrate that AgentMRI achieves an average of 73.6% accuracy in zero-shot and 95.1% accuracy for fine-tuned settings. Experiments show that it accurately executes the reconstruction process without human intervention. AgentMRI eliminates manual intervention and introduces a scalable and multimodal AI framework for autonomous MRI processing. This work may build a significant step toward fully autonomous and intelligent MR image reconstruction systems.

Deep learning algorithm for the automatic assessment of axial vertebral rotation in patients with scoliosis using the Nash-Moe method.

Kim JK, Wang MX, Park D, Chang MC

pubmed logopapersJul 22 2025
Accurate assessments of axial vertebral rotation (AVR) is essential for managing idiopathic scoliosis. The Nash-Moe classification method has been extensively used for AVR assessment; however, its subjective nature can lead to measurement variability. Therefore, herein, we propose an automated deep learning (DL) model for AVR assessment based on posteroanterior spinal radiographs. We develop a two-stage DL framework using the MMRotate toolbox and analyze 1080 posteroanterior spinal radiographs of patients aged 4-18 years. The framework comprises a vertebra detection model (864 training and 216 validation images) and a pedicle detection model (14,608 training and 3652 validation images). We improved the Nash-Moe classification method by implementing a 12-segment division system and width ratio metric for precise pedicle assessment. The vertebra and pedicle detection models achieved mean average precision values of 0.909 and 0.905, respectively. The overall classification accuracy was 0.74, with grade-specific performance between 0.70 and 1.00 for precision and 0.33 and 0.93 for recall across Grades 0-3. The proposed DL framework processed complete posteroanterior radiographs in < 5 s per case compared with conventional manual measurements (114 s per radiograph). The best performance was observed in mild to moderate rotation cases, with performance in severe rotation cases limited by insufficient data. The implementation of DL framework for the automated Nash-Moe classification method exhibited satisfactory accuracy and exceptional efficiency. However, this study is limited by low recall (0.33) for Grade 3 and the inability to classify Grade 4 towing to dataset constraints. Further validation using augmented datasets that include severe rotation cases is necessary.

Re-identification of patients from imaging features extracted by foundation models.

Nebbia G, Kumar S, McNamara SM, Bridge C, Campbell JP, Chiang MF, Mandava N, Singh P, Kalpathy-Cramer J

pubmed logopapersJul 22 2025
Foundation models for medical imaging are a prominent research topic, but risks associated with the imaging features they can capture have not been explored. We aimed to assess whether imaging features from foundation models enable patient re-identification and to relate re-identification to demographic features prediction. Our data included Colour Fundus Photos (CFP), Optical Coherence Tomography (OCT) b-scans, and chest x-rays and we reported re-identification rates of 40.3%, 46.3%, and 25.9%, respectively. We reported varying performance on demographic features prediction depending on re-identification status (e.g., AUC-ROC for gender from CFP is 82.1% for re-identified images vs. 76.8% for non-re-identified ones). When training a deep learning model on the re-identification task, we reported performance of 82.3%, 93.9%, and 63.7% at image level on our internal CFP, OCT, and chest x-ray data. We showed that imaging features extracted from foundation models in ophthalmology and radiology include information that can lead to patient re-identification.

MAN-GAN: a mask-adaptive normalization based generative adversarial networks for liver multi-phase CT image generation.

Zhao W, Chen W, Fan L, Shang Y, Wang Y, Situ W, Li W, Liu T, Yuan Y, Liu J

pubmed logopapersJul 22 2025
Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patients and was divided into three parts: a training set, a validation set and a test set. Dataset 2 included 144 patients with one specific liver disease and was used as an internal test dataset. We further collected another dataset comprising 83 patients for external validation. Then, we propose a Mask-Adaptive Normalization-based Generative Adversarial Network with Cycle-Consistency Loss (MAN-GAN) to achieve non-contrast CT to MPECT translation. To assess the efficiency of MAN-GAN, we conducted a comparative analysis with state-of-the-art methods commonly employed in diverse medical image synthesis tasks. Moreover, two subjective radiologist evaluation studies were performed to verify the clinical usefulness of the generated images. MAN-GAN outperformed the baseline network and other state-of-the-art methods in all generations of the three phases. These results were verified in internal and external datasets. According to radiological evaluation, the image quality of generated three phase images are all above average. Moreover, the similarities between real images and generated images in all three phases are satisfactory. MAN-GAN demonstrates the feasibility of liver MPECT image translation based on non-contrast images and achieves state-of-the-art performance via the subtraction strategy. It has great potential for solving the dilemma of liver CT contrast canning and aiding further liver interaction clinical scenarios.

Training Language Models for Estimating Priority Levels in Ultrasound Examination Waitlists: Algorithm Development and Validation.

Masayoshi K, Hashimoto M, Toda N, Mori H, Kobayashi G, Haque H, So M, Jinzaki M

pubmed logopapersJul 22 2025
Ultrasound examinations, while valuable, are time-consuming and often limited in availability. Consequently, many hospitals implement reservation systems; however, these systems typically lack prioritization for examination purposes. Hence, our hospital uses a waitlist system that prioritizes examination requests based on their clinical value when slots become available due to cancellations. This system, however, requires a manual review of examination purposes, which are recorded in free-form text. We hypothesized that artificial intelligence language models could preliminarily estimate the priority of requests before manual reviews. This study aimed to investigate potential challenges associated with using language models for estimating the priority of medical examination requests and to evaluate the performance of language models in processing Japanese medical texts. We retrospectively collected ultrasound examination requests from the waitlist system at Keio University Hospital, spanning January 2020 to March 2023. Each request comprised an examination purpose documented by the requesting physician and a 6-tier priority level assigned by a radiologist during the clinical workflow. We fine-tuned JMedRoBERTa, Luke, OpenCalm, and LLaMA2 under two conditions: (1) tuning only the final layer and (2) tuning all layers using either standard backpropagation or low-rank adaptation. We had 2335 and 204 requests in the training and test datasets post cleaning. When only the final layers were tuned, JMedRoBERTa outperformed the other models (Kendall coefficient=0.225). With full fine-tuning, JMedRoBERTa continued to perform best (Kendall coefficient=0.254), though with reduced margins compared with the other models. The radiologist's retrospective re-evaluation yielded a Kendall coefficient of 0.221. Language models can estimate the priority of examination requests with accuracy comparable with that of human radiologists. The fine-tuning results indicate that general-purpose language models can be adapted to domain-specific texts (ie, Japanese medical texts) with sufficient fine-tuning. Further research is required to address priority rank ambiguity, expand the dataset across multiple institutions, and explore more recent language models with potentially higher performance or better suitability for this task.

A Benchmark Framework for the Right Atrium Cavity Segmentation From LGE-MRIs.

Bai J, Zhu J, Chen Z, Yang Z, Lu Y, Li L, Li Q, Wang W, Zhang H, Wang K, Gan J, Zhao J, Lu H, Li S, Huang J, Chen X, Zhang X, Xu X, Li L, Tian Y, Campello VM, Lekadir K

pubmed logopapersJul 22 2025
The right atrium (RA) is critical for cardiac hemodynamics but is often overlooked in clinical diagnostics. This study presents a benchmark framework for RA cavity segmentation from late gadolinium-enhanced magnetic resonance imaging (LGE-MRIs), leveraging a two-stage strategy and a novel 3D deep learning network, RASnet. The architecture addresses challenges in class imbalance and anatomical variability by incorporating multi-path input, multi-scale feature fusion modules, Vision Transformers, context interaction mechanisms, and deep supervision. Evaluated on datasets comprising 354 LGE-MRIs, RASnet achieves SOTA performance with a Dice score of 92.19% on a primary dataset and demonstrates robust generalizability on an independent dataset. The proposed framework establishes a benchmark for RA cavity segmentation, enabling accurate and efficient analysis for cardiac imaging applications. Open-source code (https://github.com/zjinw/RAS) and data (https://zenodo.org/records/15524472) are provided to facilitate further research and clinical adoption.

SarAdapter: Prioritizing Attention on Semantic-Aware Representative Tokens for Enhanced Medical Image Segmentation.

Jiang W, Li Y, Liu Z, An L, Quellec G, Ou C

pubmed logopapersJul 22 2025
Transformer-based segmentation methods exhibit considerable potential in medical image analysis. However, their improved performance often comes with increased computational complexity, limiting their application in resource-constrained medical settings. Prior methods follow two independent tracks: (i) accelerating existing networks via semantic-aware routing, and (ii) optimizing token adapter design to enhance network performance. Despite directness, they encounter unavoidable defects (e.g., inflexible acceleration techniques or non-discriminative processing) limiting further improvements of quality-complexity trade-off. To address these shortcomings, we integrate these schemes by proposing the semantic-aware adapter (SarAdapter), which employs a semantic-based routing strategy, leveraging neural operators (ViT and CNN) of varying complexities. Specifically, it merges semantically similar tokens volume into low-resolution regions while preserving semantically distinct tokens as high-resolution regions. Additionally, we introduce a Mixed-adapter unit, which adaptively selects convolutional operators of varying complexities to better model regions at different scales. We evaluate our method on four medical datasets from three modalities and show that it achieves a superior balance between accuracy, model size, and efficiency. Notably, our proposed method achieves state-of-the-art segmentation quality on the Synapse dataset while reducing the number of tokens by 65.6%, signifying a substantial improvement in the efficiency of ViTs for the segmentation task.

ChebMixer: Efficient Graph Representation Learning With MLP Mixer.

Kui X, Yan H, Li Q, Zhang M, Chen L, Zou B

pubmed logopapersJul 22 2025
Graph neural networks (GNNs) have achieved remarkable success in learning graph representations, especially graph Transformers, which have recently shown superior performance on various graph mining tasks. However, the graph Transformer generally treats nodes as tokens, which results in quadratic complexity regarding the number of nodes during self-attention computation. The graph multilayer perceptron (MLP) mixer addresses this challenge using the efficient MLP Mixer technique from computer vision. However, the time-consuming process of extracting graph tokens limits its performance. In this article, we present a novel architecture named ChebMixer, a newly proposed graph MLP Mixer that uses fast Chebyshev polynomials-based spectral filtering to extract a sequence of tokens. First, we produce multiscale representations of graph nodes via fast Chebyshev polynomial-based spectral filtering. Next, we consider each node's multiscale representations as a sequence of tokens and refine the node representation with an effective MLP Mixer. Finally, we aggregate the multiscale representations of nodes through Chebyshev interpolation. Owing to the powerful representation capabilities and fast computational properties of the MLP Mixer, we can quickly extract more informative node representations to improve the performance of downstream tasks. The experimental results prove our significant improvements in various scenarios, ranging from homogeneous and heterophilic graph node classification to medical image segmentation. Compared with NAGphormer, the average performance improved by 1.45% on homogeneous graphs and 4.15% on heterophilic graphs. And the average performance improved by 1.39% on medical image segmentation tasks compared with VM-UNet. We will release the source code after this article is accepted.

EICSeg: Universal Medical Image Segmentation via Explicit In-Context Learning.

Xie S, Zhang L, Niu Z, Ye F, Zhong Q, Xie D, Chen YW, Lin L

pubmed logopapersJul 22 2025
Deep learning models for medical image segmentation often struggle with task-specific characteristics, limiting their generalization to unseen tasks with new anatomies, labels, or modalities. Retraining or fine-tuning these models requires substantial human effort and computational resources. To address this, in-context learning (ICL) has emerged as a promising paradigm, enabling query image segmentation by conditioning on example image-mask pairs provided as prompts. Unlike previous approaches that rely on implicit modeling or non-end-to-end pipelines, we redefine the core interaction mechanism in ICL as an explicit retrieval process, termed E-ICL, benefiting from the emergence of vision foundation models (VFMs). E-ICL captures dense correspondences between queries and prompts at minimal learning cost and leverages them to dynamically weight multi-class prompt masks. Built upon E-ICL, we propose EICSeg, the first end-to-end ICL framework that integrates complementary VFMs for universal medical image segmentation. Specifically, we introduce a lightweight SD-Adapter to bridge the distinct functionalities of the VFMs, enabling more accurate segmentation predictions. To fully exploit the potential of EICSeg, we further design a scalable self-prompt training strategy and an adaptive token-to-image prompt selection mechanism, facilitating both efficient training and inference. EICSeg is trained on 47 datasets covering diverse modalities and segmentation targets. Experiments on nine unseen datasets demonstrate its strong few-shot generalization ability, achieving an average Dice score of 74.0%, outperforming existing in-context and few-shot methods by 4.5%, and reducing the gap to task-specific models to 10.8%. Even with a single prompt, EICSeg achieves a competitive average Dice score of 60.1%. Notably, it performs automatic segmentation without manual prompt engineering, delivering results comparable to interactive models while requiring minimal labeled data. Source code will be available at https://github.com/ zerone-fg/EICSeg.
Page 83 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.