Sort by:
Page 10 of 4164152 results

A fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry.

Chen S, Zhong L, Zhang Z, Zhang X

pubmed logopapersAug 19 2025
Aiming at the difficulty of knee MRI bone and cartilage subregion segmentation caused by numerous subregions and unclear subregion boundary, a fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry is proposed. Specifically, first, we use a transformer-based multilevel region and edge aggregation network to achieve precise segmentation of bone and cartilage tissue edges in knee MRI. Then, we designed a fibula detection module, which determines the medial and lateral of the knee by detecting the position of the fibula. Afterwards, a subregion segmentation module based on boundary information was designed, which divides bone and cartilage tissues into subregions by detecting the boundaries. In addition, in order to provide data support for the proposed model, fibula classification dataset and knee MRI bone and cartilage subregion dataset were established respectively. Testing on the fibula classification dataset we established, the proposed method achieved a detection accuracy of 1.000 in detecting the medial and lateral of the knee. On the knee MRI bone and cartilage subregion dataset we established, the proposed method attained an average dice score of 0.953 for bone subregions and 0.831 for cartilage subregions, which verifies the correctness of the proposed method.

Lung adenocarcinoma subtype classification based on contrastive learning model with multimodal integration.

Wang C, Liu L, Fan C, Zhang Y, Mai Z, Li L, Liu Z, Tian Y, Hu J, Elazab A

pubmed logopapersAug 19 2025
Accurately identifying the stages of lung adenocarcinoma is essential for selecting the most appropriate treatment plans. Nonetheless, this task is complicated due to challenges such as integrating diverse data, similarities among subtypes, and the need to capture contextual features, making precise differentiation difficult. We address these challenges and propose a multimodal deep neural network that integrates computed tomography (CT) images, annotated lesion bounding boxes, and electronic health records. Our model first combines bounding boxes with precise lesion location data and CT scans, generating a richer semantic representation through feature extraction from regions of interest to enhance localization accuracy using a vision transformer module. Beyond imaging data, the model also incorporates clinical information encoded using a fully connected encoder. Features extracted from both CT and clinical data are optimized for cosine similarity using a contrastive language-image pre-training module, ensuring they are cohesively integrated. In addition, we introduce an attention-based feature fusion module that harmonizes these features into a unified representation to fuse features from different modalities further. This integrated feature set is then fed into a classifier that effectively distinguishes among the three types of adenocarcinomas. Finally, we employ focal loss to mitigate the effects of unbalanced classes and contrastive learning loss to enhance feature representation and improve the model's performance. Our experiments on public and proprietary datasets demonstrate the efficiency of our model, achieving a superior validation accuracy of 81.42% and an area under the curve of 0.9120. These results significantly outperform recent multimodal classification approaches. The code is available at https://github.com/fancccc/LungCancerDC .

Machine Learning in Venous Thromboembolism - Why and What Next?

Gurumurthy G, Kisiel F, Reynolds L, Thomas W, Othman M, Arachchillage DJ, Thachil J

pubmed logopapersAug 19 2025
Venous thromboembolism (VTE) remains a leading cause of cardiovascular morbidity and mortality, despite advances in imaging and anticoagulation. VTE arises from diverse and overlapping risk factors, such as inherited thrombophilia, immobility, malignancy, surgery or trauma, pregnancy, hormonal therapy, obesity, chronic medical conditions (e.g., heart failure, inflammatory disease), and advancing age. Clinicians, therefore, face challenges in balancing the benefits of thromboprophylaxis against the bleeding risk. Existing clinical risk scores often exhibit only modest discrimination and calibration across heterogeneous patient populations. Machine learning (ML) has emerged as a promising tool to address these limitations. In imaging, convolutional neural networks and hybrid algorithms can detect VTE on CT pulmonary angiography with areas under the curves (AUCs) of 0.85 to 0.96. In surgical cohorts, gradient-boosting models outperform traditional risk scores, achieving AUCs between 0.70 and 0.80 in predicting postoperative VTE. In cancer-associated venous thrombosis, advanced ML models demonstrate AUCs between 0.68 and 0.82. However, concerns about bias and external validation persist. Bleeding risk prediction models remain challenging in extended anticoagulation settings, often matching conventional models. Predicting recurrent VTE using neural networks showed AUCs of 0.93 to 0.99 in initial studies. However, these lack transparency and prospective validation. Most ML models suffer from limited external validation, "black box" algorithms, and integration hurdles within clinical workflows. Future efforts should focus on standardized reporting (e.g., Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis [TRIPOD]-ML), transparent model interpretation, prospective impact assessments, and seamless incorporation into electronic health records to realize the full potential of ML in VTE.

Emerging modalities for neuroprognostication in neonatal encephalopathy: harnessing the potential of artificial intelligence.

Chawla V, Cizmeci MN, Sullivan KM, Gritz EC, Q Cardona V, Menkiti O, Natarajan G, Rao R, McAdams RM, Dizon ML

pubmed logopapersAug 19 2025
Neonatal Encephalopathy (NE) from presumed hypoxic-ischemic encephalopathy (pHIE) is a leading cause of morbidity and mortality in infants worldwide. Recent advancements in HIE research have introduced promising tools for improved screening of high-risk infants, time to diagnosis, and accuracy of assessment of neurologic injury to guide management and predict outcomes, some of which integrate artificial intelligence (AI) and machine learning (ML). This review begins with an overview of AI/ML before examining emerging prognostic approaches for predicting outcomes in pHIE. It explores various modalities including placental and fetal biomarkers, gene expression, electroencephalography, brain magnetic resonance imaging and other advanced neuroimaging techniques, clinical video assessment tools, and transcranial magnetic stimulation paired with electromyography. Each of these approaches may come to play a crucial role in predicting outcomes in pHIE. We also discuss the application of AI/ML to enhance these emerging prognostic tools. While further validation is needed for widespread clinical adoption, these tools and their multimodal integration hold the potential to better leverage neuroplasticity windows of affected infants. IMPACT: This article provides an overview of placental pathology, biomarkers, gene expression, electroencephalography, motor assessments, brain imaging, and transcranial magnetic stimulation tools for long-term neurodevelopmental outcome prediction following neonatal encephalopathy, that lend themselves to augmentation by artificial intelligence/machine learning (AI/ML). Emerging AI/ML tools may create opportunities for enhanced prognostication through multimodal analyses.

Effect of Data Augmentation on Conformal Prediction for Diabetic Retinopathy

Rizwan Ahamed, Annahita Amireskandari, Joel Palko, Carol Laxson, Binod Bhattarai, Prashnna Gyawali

arxiv logopreprintAug 19 2025
The clinical deployment of deep learning models for high-stakes tasks such as diabetic retinopathy (DR) grading requires demonstrable reliability. While models achieve high accuracy, their clinical utility is limited by a lack of robust uncertainty quantification. Conformal prediction (CP) offers a distribution-free framework to generate prediction sets with statistical guarantees of coverage. However, the interaction between standard training practices like data augmentation and the validity of these guarantees is not well understood. In this study, we systematically investigate how different data augmentation strategies affect the performance of conformal predictors for DR grading. Using the DDR dataset, we evaluate two backbone architectures -- ResNet-50 and a Co-Scale Conv-Attentional Transformer (CoaT) -- trained under five augmentation regimes: no augmentation, standard geometric transforms, CLAHE, Mixup, and CutMix. We analyze the downstream effects on conformal metrics, including empirical coverage, average prediction set size, and correct efficiency. Our results demonstrate that sample-mixing strategies like Mixup and CutMix not only improve predictive accuracy but also yield more reliable and efficient uncertainty estimates. Conversely, methods like CLAHE can negatively impact model certainty. These findings highlight the need to co-design augmentation strategies with downstream uncertainty quantification in mind to build genuinely trustworthy AI systems for medical imaging.

Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images

Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala

arxiv logopreprintAug 19 2025
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

A Systematic Study of Deep Learning Models and xAI Methods for Region-of-Interest Detection in MRI Scans

Justin Yiu, Kushank Arora, Daniel Steinberg, Rohit Ghiya

arxiv logopreprintAug 19 2025
Magnetic Resonance Imaging (MRI) is an essential diagnostic tool for assessing knee injuries. However, manual interpretation of MRI slices remains time-consuming and prone to inter-observer variability. This study presents a systematic evaluation of various deep learning architectures combined with explainable AI (xAI) techniques for automated region of interest (ROI) detection in knee MRI scans. We investigate both supervised and self-supervised approaches, including ResNet50, InceptionV3, Vision Transformers (ViT), and multiple U-Net variants augmented with multi-layer perceptron (MLP) classifiers. To enhance interpretability and clinical relevance, we integrate xAI methods such as Grad-CAM and Saliency Maps. Model performance is assessed using AUC for classification and PSNR/SSIM for reconstruction quality, along with qualitative ROI visualizations. Our results demonstrate that ResNet50 consistently excels in classification and ROI identification, outperforming transformer-based models under the constraints of the MRNet dataset. While hybrid U-Net + MLP approaches show potential for leveraging spatial features in reconstruction and interpretability, their classification performance remains lower. Grad-CAM consistently provided the most clinically meaningful explanations across architectures. Overall, CNN-based transfer learning emerges as the most effective approach for this dataset, while future work with larger-scale pretraining may better unlock the potential of transformer models.

Latent Interpolation Learning Using Diffusion Models for Cardiac Volume Reconstruction

Niklas Bubeck, Suprosanna Shit, Chen Chen, Can Zhao, Pengfei Guo, Dong Yang, Georg Zitzlsberger, Daguang Xu, Bernhard Kainz, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintAug 19 2025
Cardiac Magnetic Resonance (CMR) imaging is a critical tool for diagnosing and managing cardiovascular disease, yet its utility is often limited by the sparse acquisition of 2D short-axis slices, resulting in incomplete volumetric information. Accurate 3D reconstruction from these sparse slices is essential for comprehensive cardiac assessment, but existing methods face challenges, including reliance on predefined interpolation schemes (e.g., linear or spherical), computational inefficiency, and dependence on additional semantic inputs such as segmentation labels or motion data. To address these limitations, we propose a novel \textbf{Ca}rdiac \textbf{L}atent \textbf{I}nterpolation \textbf{D}iffusion (CaLID) framework that introduces three key innovations. First, we present a data-driven interpolation scheme based on diffusion models, which can capture complex, non-linear relationships between sparse slices and improves reconstruction accuracy. Second, we design a computationally efficient method that operates in the latent space and speeds up 3D whole-heart upsampling time by a factor of 24, reducing computational overhead compared to previous methods. Third, with only sparse 2D CMR images as input, our method achieves SOTA performance against baseline methods, eliminating the need for auxiliary input such as morphological guidance, thus simplifying workflows. We further extend our method to 2D+T data, enabling the effective modeling of spatiotemporal dynamics and ensuring temporal coherence. Extensive volumetric evaluations and downstream segmentation tasks demonstrate that CaLID achieves superior reconstruction quality and efficiency. By addressing the fundamental limitations of existing approaches, our framework advances the state of the art for spatio and spatiotemporal whole-heart reconstruction, offering a robust and clinically practical solution for cardiovascular imaging.

Automated surgical planning with nnU-Net: delineation of the anatomy in hepatobiliary phase MRI

Karin A. Olthof, Matteo Fusagli, Bianca Güttner, Tiziano Natali, Bram Westerink, Stefanie Speidel, Theo J. M. Ruers, Koert F. D. Kuhlmann, Andrey Zhylka

arxiv logopreprintAug 19 2025
Background: The aim of this study was to develop and evaluate a deep learning-based automated segmentation method for hepatic anatomy (i.e., parenchyma, tumors, portal vein, hepatic vein and biliary tree) from the hepatobiliary phase of gadoxetic acid-enhanced MRI. This method should ease the clinical workflow of preoperative planning. Methods: Manual segmentation was performed on hepatobiliary phase MRI scans from 90 consecutive patients who underwent liver surgery between January 2020 and October 2023. A deep learning network (nnU-Net v1) was trained on 72 patients with an extra focus on thin structures and topography preservation. Performance was evaluated on an 18-patient test set by comparing automated and manual segmentations using Dice similarity coefficient (DSC). Following clinical integration, 10 segmentations (assessment dataset) were generated using the network and manually refined for clinical use to quantify required adjustments using DSC. Results: In the test set, DSCs were 0.97+/-0.01 for liver parenchyma, 0.80+/-0.04 for hepatic vein, 0.79+/-0.07 for biliary tree, 0.77+/-0.17 for tumors, and 0.74+/-0.06 for portal vein. Average tumor detection rate was 76.6+/-24.1%, with a median of one false-positive per patient. The assessment dataset showed minor adjustments were required for clinical use of the 3D models, with high DSCs for parenchyma (1.00+/-0.00), portal vein (0.98+/-0.01) and hepatic vein (0.95+/-0.07). Tumor segmentation exhibited greater variability (DSC 0.80+/-0.27). During prospective clinical use, the model detected three additional tumors initially missed by radiologists. Conclusions: The proposed nnU-Net-based segmentation method enables accurate and automated delineation of hepatic anatomy. This enables 3D planning to be applied efficiently as a standard-of-care for every patient undergoing liver surgery.

State of Abdominal CT Datasets: A Critical Review of Bias, Clinical Relevance, and Real-world Applicability

Saeide Danaei, Zahra Dehghanian, Elahe Meftah, Nariman Naderi, Seyed Amir Ahmad Safavi-Naini, Faeze Khorasanizade, Hamid R. Rabiee

arxiv logopreprintAug 19 2025
This systematic review critically evaluates publicly available abdominal CT datasets and their suitability for artificial intelligence (AI) applications in clinical settings. We examined 46 publicly available abdominal CT datasets (50,256 studies). Across all 46 datasets, we found substantial redundancy (59.1\% case reuse) and a Western/geographic skew (75.3\% from North America and Europe). A bias assessment was performed on the 19 datasets with >=100 cases; within this subset, the most prevalent high-risk categories were domain shift (63\%) and selection bias (57\%), both of which may undermine model generalizability across diverse healthcare environments -- particularly in resource-limited settings. To address these challenges, we propose targeted strategies for dataset improvement, including multi-institutional collaboration, adoption of standardized protocols, and deliberate inclusion of diverse patient populations and imaging technologies. These efforts are crucial in supporting the development of more equitable and clinically robust AI models for abdominal imaging.
Page 10 of 4164152 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.