Sort by:
Page 11 of 2252246 results

Development and Validation an AI Model to Improve the Diagnosis of Deep Infiltrating Endometriosis for Junior Sonologists.

Xu J, Zhang A, Zheng Z, Cao J, Zhang X

pubmed logopapersJul 1 2025
This study aims to develop and validate an artificial intelligence (AI) model based on ultrasound (US) videos and images to improve the performance of junior sonologists in detecting deep infiltrating endometriosis (DE). In this retrospective study, data were collected from female patients who underwent US examinations and had DE. The US image records were divided into two parts. First, during the model development phase, an AI-DE model was trained employing YOLOv8 to detect pelvic DE nodules. Subsequently, its clinical applicability was evaluated by comparing the diagnostic performance of junior sonologists with and without AI-model assistance. The AI-DE model was trained using 248 images, which demonstrated high performance, with a mAP50 (mean Average Precision at IoU threshold 0.5) of 0.9779 on the test set. Total 147 images were used for evaluate the diagnostic performance. The diagnostic performance of junior sonologists improved with the assistance of the AI-DE model. The area under the receiver operating characteristic (AUROC) curve improved from 0.748 (95% CI, 0.624-0.867) to 0.878 (95% CI, 0.792-0.964; p < 0.0001) for junior sonologist A, and from 0.713 (95% CI, 0.592-0.835) to 0.798 (95% CI, 0.677-0.919; p < 0.0001) for junior sonologist B. Notably, the sensitivity of both sonologists increased significantly, with the largest increase from 77.42% to 94.35%. The AI-DE model based on US images showed good performance in DE detection and significantly improved the diagnostic performance of junior sonologists.

A comparison of an integrated and image-only deep learning model for predicting the disappearance of indeterminate pulmonary nodules.

Wang J, Cai J, Tang W, Dudurych I, van Tuinen M, Vliegenthart R, van Ooijen P

pubmed logopapersJul 1 2025
Indeterminate pulmonary nodules (IPNs) require follow-up CT to assess potential growth; however, benign nodules may disappear. Accurately predicting whether IPNs will resolve is a challenge for radiologists. Therefore, we aim to utilize deep-learning (DL) methods to predict the disappearance of IPNs. This retrospective study utilized data from the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON) and Imaging in Lifelines (ImaLife) cohort. Participants underwent follow-up CT to determine the evolution of baseline IPNs. The NELSON data was used for model training. External validation was performed in ImaLife. We developed integrated DL-based models that incorporated CT images and demographic data (age, sex, smoking status, and pack years). We compared the performance of integrated methods with those limited to CT images only and calculated sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). From a clinical perspective, ensuring high specificity is critical, as it minimizes false predictions of non-resolving nodules that should be monitored for evolution on follow-up CTs. Feature importance was calculated using SHapley Additive exPlanations (SHAP) values. The training dataset included 840 IPNs (134 resolving) in 672 participants. The external validation dataset included 111 IPNs (46 resolving) in 65 participants. On the external validation set, the performance of the integrated model (sensitivity, 0.50; 95 % CI, 0.35-0.65; specificity, 0.91; 95 % CI, 0.80-0.96; AUC, 0.82; 95 % CI, 0.74-0.90) was comparable to that solely trained on CT image (sensitivity, 0.41; 95 % CI, 0.27-0.57; specificity, 0.89; 95 % CI, 0.78-0.95; AUC, 0.78; 95 % CI, 0.69-0.86; P = 0.39). The top 10 most important features were all image related. Deep learning-based models can predict the disappearance of IPNs with high specificity. Integrated models using CT scans and clinical data had comparable performance to those using only CT images.

Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM.

Pak S, Son HJ, Kim D, Woo JY, Yang I, Hwang HS, Rim D, Choi MS, Lee SH

pubmed logopapersJul 1 2025
Convolutional neural networks (CNNs) have been studied for detecting bone metastases on bone scans; however, the application of ConvNeXt and transformer models has not yet been explored. This study aims to evaluate the performance of various deep learning models, including the ConvNeXt and transformer models, in diagnosing metastatic lesions from bone scans. We retrospectively analyzed bone scans from patients with cancer obtained at 2 institutions: the training and validation sets (n=4626) were from Hospital 1 and the test set (n=1428) was from Hospital 2. The deep learning models evaluated included ResNet18, the Data-Efficient Image Transformer (DeiT), the Vision Transformer (ViT Large 16), the Swin Transformer (Swin Base), and ConvNeXt Large. Gradient-weighted class activation mapping (Grad-CAM) was used for visualization. Both the validation set and the test set demonstrated that the ConvNeXt large model (0.969 and 0.885, respectively) exhibited the best performance, followed by the Swin Base model (0.965 and 0.840, respectively), both of which significantly outperformed ResNet (0.892 and 0.725, respectively). Subgroup analyses revealed that all the models demonstrated greater diagnostic accuracy for patients with polymetastasis compared with those with oligometastasis. Grad-CAM visualization revealed that the ConvNeXt Large model focused more on identifying local lesions, whereas the Swin Base model focused on global areas such as the axial skeleton and pelvis. Compared with traditional CNN and transformer models, the ConvNeXt model demonstrated superior diagnostic performance in detecting bone metastases from bone scans, especially in cases of polymetastasis, suggesting its potential in medical image analysis.

Transformer-based skeletal muscle deep-learning model for survival prediction in gastric cancer patients after curative resection.

Chen Q, Jian L, Xiao H, Zhang B, Yu X, Lai B, Wu X, You J, Jin Z, Yu L, Zhang S

pubmed logopapersJul 1 2025
We developed and evaluated a skeletal muscle deep-learning (SMDL) model using skeletal muscle computed tomography (CT) imaging to predict the survival of patients with gastric cancer (GC). This multicenter retrospective study included patients who underwent curative resection of GC between April 2008 and December 2020. Preoperative CT images at the third lumbar vertebra were used to develop a Transformer-based SMDL model for predicting recurrence-free survival (RFS) and disease-specific survival (DSS). The predictive performance of the SMDL model was assessed using the area under the curve (AUC) and benchmarked against both alternative artificial intelligence models and conventional body composition parameters. The association between the model score and survival was assessed using Cox regression analysis. An integrated model combining SMDL signature with clinical variables was constructed, and its discrimination and fairness were evaluated. A total of 1242, 311, and 94 patients were assigned to the training, internal, and external validation cohorts, respectively. The Transformer-based SMDL model yielded AUCs of 0.791-0.943 for predicting RFS and DSS across all three cohorts and significantly outperformed other models and body composition parameters. The model score was a strong independent prognostic factor for survival. Incorporating the SMDL signature into the clinical model resulted in better prognostic prediction performance. The false-negative and false-positive rates of the integrated model were similar across sex and age subgroups, indicating robust fairness. The Transformer-based SMDL model could accurately predict survival of GC and identify patients at high risk of recurrence or death, thereby assisting clinical decision-making.

Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.

Tushar FI, Vancoillie L, McCabe C, Kavuri A, Dahal L, Harrawood B, Fryling M, Zarei M, Sotoudeh-Paima S, Ho FC, Ghosh D, Harowicz MR, Tailor TD, Luo S, Segars WP, Abadi E, Lafata KJ, Lo JY, Samei E

pubmed logopapersJul 1 2025
Clinical imaging trials play a crucial role in advancing medical innovation but are often costly, inefficient, and ethically constrained. Virtual Imaging Trials (VITs) present a solution by simulating clinical trial components in a controlled, risk-free environment. The Virtual Lung Screening Trial (VLST), an in silico study inspired by the National Lung Screening Trial (NLST), illustrates the potential of VITs to expedite clinical trials, minimize risks to participants, and promote optimal use of imaging technologies in healthcare. This study aimed to show that a virtual imaging trial platform could investigate some key elements of a major clinical trial, specifically the NLST, which compared Computed tomography (CT) and chest radiography (CXR) for lung cancer screening. With simulated cancerous lung nodules, a virtual patient cohort of 294 subjects was created using XCAT human models. Each virtual patient underwent both CT and CXR imaging, with deep learning models, the AI CT-Reader and AI CXR-Reader, acting as virtual readers to perform recall patients with suspicion of lung cancer. The primary outcome was the difference in diagnostic performance between CT and CXR, measured by the Area Under the Curve (AUC). The AI CT-Reader showed superior diagnostic accuracy, achieving an AUC of 0.92 (95 % CI: 0.90-0.95) compared to the AI CXR-Reader's AUC of 0.72 (95 % CI: 0.67-0.77). Furthermore, at the same 94 % CT sensitivity reported by the NLST, the VLST specificity of 73 % was similar to the NLST specificity of 73.4 %. This CT performance highlights the potential of VITs to replicate certain aspects of clinical trials effectively, paving the way toward a safe and efficient method for advancing imaging-based diagnostics.

Integrated brain connectivity analysis with fMRI, DTI, and sMRI powered by interpretable graph neural networks.

Qu G, Zhou Z, Calhoun VD, Zhang A, Wang YP

pubmed logopapersJul 1 2025
Multimodal neuroimaging data modeling has become a widely used approach but confronts considerable challenges due to their heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret diverse datasets within a cohesive analytical framework. In our research, we combine functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and structural MRI (sMRI) for joint analysis. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain's connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging-derived features from multiple modalities - functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI - within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating an amalgamation of multimodal imaging data. This technique enhances interpretability at the connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved prediction accuracy and uncovers crucial anatomical features and neural connections, deepening our understanding of brain structure and function. This study not only advances multimodal neuroimaging analytics by offering a novel method for integrative analysis of diverse imaging modalities but also improves the understanding of intricate relationships between brain's structural and functional networks and cognitive development.

MDAL: Modality-difference-based active learning for multimodal medical image analysis via contrastive learning and pointwise mutual information.

Wang H, Jin Q, Du X, Wang L, Guo Q, Li H, Wang M, Song Z

pubmed logopapersJul 1 2025
Multimodal medical images reveal different characteristics of the same anatomy or lesion, offering significant clinical value. Deep learning has achieved widespread success in medical image analysis with large-scale labeled datasets. However, annotating medical images is expensive and labor-intensive for doctors, and the variations between different modalities further increase the annotation cost for multimodal images. This study aims to minimize the annotation cost for multimodal medical image analysis. We proposes a novel active learning framework MDAL based on modality differences for multimodal medical images. MDAL quantifies the sample-wise modality differences through pointwise mutual information estimated by multimodal contrastive learning. We hypothesize that samples with larger modality differences are more informative for annotation and further propose two sampling strategies based on these differences: MaxMD and DiverseMD. Moreover, MDAL could select informative samples in one shot without initial labeled data. We evaluated MDAL on public brain glioma and meningioma segmentation datasets and an in-house ovarian cancer classification dataset. MDAL outperforms other advanced active learning competitors. Besides, when using only 20%, 20%, and 15% of labeled samples in these datasets, MDAL reaches 99.6%, 99.9%, and 99.3% of the performance of supervised training with full labeled dataset, respectively. The results show that our proposed MDAL could significantly reduce the annotation cost for multimodal medical image analysis. We expect MDAL could be further extended to other multimodal medical data for lower annotation costs.

Radiation and contrast dose reduction in coronary CT angiography for slender patients with 70 kV tube voltage and deep learning image reconstruction.

Ren Z, Shen L, Zhang X, He T, Yu N, Zhang M

pubmed logopapersJul 1 2025
To evaluate the radiation and contrast dose reduction potential of combining 70 kV with deep learning image reconstruction (DLIR) in coronary computed tomography angiography (CCTA) for slender patients with body-mass-index (BMI) ≤25 kg/m2. Sixty patients for CCTA were randomly divided into 2 groups: group A with 120 kV and contrast agent dose of 0.8 mL/kg, and group B with 70 kV and contrast agent dose of 0.5 mL/kg. Group A used adaptive statistical iterative reconstruction-V (ASIR-V) with 50% strength level (50%ASIR-V) while group B used 50% ASIR-V, DLIR of low level (DLIR-L), DLIR of medium level (DLIR-M), and DLIR of high level (DLIR-H) for image reconstruction. The CT values and SD values of coronary arteries and pericardial fat were measured, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The image quality was subjectively evaluated by 2 radiologists using a five-point scoring system. The effective radiation dose (ED) and contrast dose were calculated and compared. Group B significantly reduced radiation dose by 75.6% and contrast dose by 32.9% compared to group A. Group B exhibited higher CT values of coronary arteries than group A, and DLIR-L, DLIR-M, and DLIR-H in group B provided higher SNR values and CNR values and subjective scores, among which DLIR-H had the lowest noise and highest subjective scores. Using 70 kV combined with DLIR significantly reduces radiation and contrast dose while improving image quality in CCTA for slender patients with DLIR-H having the best effect on improving image quality. The 70 kV and DLIR-H may be used in CCTA for slender patients to significantly reduce radiation dose and contrast dose while improving image quality.

Coronary p-Graph: Automatic classification and localization of coronary artery stenosis from Cardiac CTA using DSA-based annotations.

Zhang Y, Zhang X, He Y, Zang S, Liu H, Liu T, Zhang Y, Chen Y, Shu H, Coatrieux JL, Tang H, Zhang L

pubmed logopapersJul 1 2025
Coronary artery disease (CAD) is a prevalent cardiovascular condition with profound health implications. Digital subtraction angiography (DSA) remains the gold standard for diagnosing vascular disease, but its invasiveness and procedural demands underscore the need for alternative diagnostic approaches. Coronary computed tomography angiography (CCTA) has emerged as a promising non-invasive method for accurately classifying and localizing coronary artery stenosis. However, the complexity of CCTA images and their dependence on manual interpretation highlight the essential role of artificial intelligence in supporting clinicians in stenosis detection. This paper introduces a novel framework, Coronaryproposal-based Graph Convolutional Networks (Coronary p-Graph), designed for the automated detection of coronary stenosis from CCTA scans. The framework transforms CCTA data into curved multi-planar reformation (CMPR) images that delineate the coronary artery centerline. After aligning the CMPR volume along this centerline, the entire vasculature is analyzed using a convolutional neural network (CNN) for initial feature extraction. Based on predefined criteria informed by prior knowledge, the model generates candidate stenotic segments, termed "proposals," which serve as graph nodes. The spatial relationships between nodes are then modeled as edges, constructing a graph representation that is processed using a graph convolutional network (GCN) for precise classification and localization of stenotic segments. All CCTA images were rigorously annotated by three expert radiologists, using DSA reports as the reference standard. This novel methodology offers diagnostic performance equivalent to invasive DSA based solely on non-invasive CCTA, potentially reducing the need for invasive procedures. The proposed method was evaluated on a retrospective dataset comprising 259 cases, each with paired CCTA and corresponding DSA reports. Quantitative analyses demonstrated the superior performance of our approach compared to existing methods, with the following metrics: accuracy of 0.844, specificity of 0.910, area under the receiver operating characteristic curve (AUC) of 0.74, and mean absolute error (MAE) of 0.157.

Deep Learning Based on Ultrasound Images Differentiates Parotid Gland Pleomorphic Adenomas and Warthin Tumors.

Li Y, Zou M, Zhou X, Long X, Liu X, Yao Y

pubmed logopapersJul 1 2025
Exploring the clinical significance of employing deep learning methodologies on ultrasound images for the development of an automated model to accurately identify pleomorphic adenomas and Warthin tumors in salivary glands. A retrospective study was conducted on 91 patients who underwent ultrasonography examinations between January 2016 and December 2023 and were subsequently diagnosed with pleomorphic adenoma or Warthin's tumor based on postoperative pathological findings. A total of 526 ultrasonography images were collected for analysis. Convolutional neural network (CNN) models, including ResNet18, MobileNetV3Small, and InceptionV3, were trained and validated using these images for the differentiation of pleomorphic adenoma and Warthin's tumor. Performance evaluation metrics such as receiver operating characteristic (ROC) curves, area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value were utilized. Two ultrasound physicians, with varying levels of expertise, conducted independent evaluations of the ultrasound images. Subsequently, a comparative analysis was performed between the diagnostic outcomes of the ultrasound physicians and the results obtained from the best-performing model. Inter-rater agreement between routine ultrasonography interpretation by the two expert ultrasonographers and the automatic identification diagnosis of the best model in relation to pathological results was assessed using kappa tests. The deep learning models achieved favorable performance in differentiating pleomorphic adenoma from Warthin's tumor. The ResNet18, MobileNetV3Small, and InceptionV3 models exhibited diagnostic accuracies of 82.4% (AUC: 0.932), 87.0% (AUC: 0.946), and 77.8% (AUC: 0.811), respectively. Among these models, MobileNetV3Small demonstrated the highest performance. The experienced ultrasonographer achieved a diagnostic accuracy of 73.5%, with sensitivity, specificity, positive predictive value, and negative predictive value of 73.7%, 73.3%, 77.8%, and 68.8%, respectively. The less-experienced ultrasonographer achieved a diagnostic accuracy of 69.0%, with sensitivity, specificity, positive predictive value, and negative predictive value of 66.7%, 71.4%, 71.4%, and 66.7%, respectively. The kappa test revealed strong consistency between the best-performing deep learning model and postoperative pathological diagnoses (kappa value: .778, <i>p</i>-value < .001). In contrast, the less-experienced ultrasonographer demonstrated poor consistency in image interpretations (kappa value: .380, <i>p</i>-value < .05). The diagnostic accuracy of the best deep learning model was significantly higher than that of the ultrasonographers, and the experienced ultrasonographer exhibited higher diagnostic accuracy than the less-experienced one. This study demonstrates the promising performance of a deep learning-based method utilizing ultrasonography images for the differentiation of pleomorphic adenoma and Warthin's tumor. The approach reduces subjective errors, provides decision support for clinicians, and improves diagnostic consistency.
Page 11 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.