Sort by:
Page 95 of 2252246 results

Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters.

Bosbach WA, Schoeni L, Beisbart C, Senge JF, Mitrakovic M, Anderson SE, Achangwa NR, Divjak E, Ivanac G, Grieser T, Weber MA, Maurer MH, Sanal HT, Daneshvar K

pubmed logopapersJun 3 2025
Novel artificial intelligence tools have the potential to significantly enhance productivity in medicine, while also maintaining or even improving treatment quality. In this study, we aimed to evaluate the current capability of ChatGPT-4.0 to accurately interpret multimodal musculoskeletal tumor cases.We created 25 cases, each containing images from X-ray, computed tomography, magnetic resonance imaging, or scintigraphy. ChatGPT-4.0 was tasked with classifying each case using a six-option, two-choice question, where both a primary and a secondary diagnosis were allowed. For performance evaluation, human raters also assessed the same cases.When only the primary diagnosis was taken into account, the accuracy of human raters was greater than that of ChatGPT-4.0 by a factor of nearly 2 (87% vs. 44%). However, in a setting that also considered secondary diagnoses, the performance gap shrank substantially (accuracy: 94% vs. 71%). Power analysis relying on Cohen's w confirmed the adequacy of the sample set size (n: 25).The tested artificial intelligence tool demonstrated lower performance than human raters. Considering factors such as speed, constant availability, and potential future improvements, it appears plausible that artificial intelligence tools could serve as valuable assistance systems for doctors in future clinical settings. · ChatGPT-4.0 classifies musculoskeletal cases using multimodal imaging inputs.. · Human raters outperform AI in primary diagnosis accuracy by a factor of nearly two.. · Including secondary diagnoses improves AI performance and narrows the gap.. · AI demonstrates potential as an assistive tool in future radiological workflows.. · Power analysis confirms robustness of study findings with the current sample size.. · Bosbach WA, Schoeni L, Beisbart C et al. Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters. Rofo 2025; DOI 10.1055/a-2594-7085.

PARADIM: A Platform to Support Research at the Interface of Data Science and Medical Imaging.

Lemaréchal Y, Couture G, Pelletier F, Lefol R, Asselin PL, Ouellet S, Bernard J, Ebrahimpour L, Manem VSK, Topalis J, Schachtner B, Jodogne S, Joubert P, Jeblick K, Ingrisch M, Després P

pubmed logopapersJun 3 2025
This paper describes PARADIM, a digital infrastructure designed to support research at the interface of data science and medical imaging, with a focus on Research Data Management best practices. The platform is built from open-source components and rooted in the FAIR principles through strict compliance with the DICOM standard. It addresses key needs in data curation, governance, privacy, and scalable resource management. Supporting every stage of the data science discovery cycle, the platform offers robust functionalities for user identity and access management, data de-identification, storage, annotation, as well as model training and evaluation. Rich metadata are generated all along the research lifecycle to ensure the traceability and reproducibility of results. PARADIM hosts several medical image collections and allows the automation of large-scale, computationally intensive pipelines (e.g., automatic segmentation, dose calculations, AI model evaluation). The platform fills a gap at the interface of data science and medical imaging, where digital infrastructures are key in the development, evaluation, and deployment of innovative solutions in the real world.

FPA-based weighted average ensemble of deep learning models for classification of lung cancer using CT scan images.

Zhou L, Jain A, Dubey AK, Singh SK, Gupta N, Panwar A, Kumar S, Althaqafi TA, Arya V, Alhalabi W, Gupta BB

pubmed logopapersJun 3 2025
Cancer is among the most dangerous diseases contributing to rising global mortality rates. Lung cancer, particularly adenocarcinoma, is one of the deadliest forms and severely impacts human life. Early diagnosis and appropriate treatment significantly increase patient survival rates. Computed Tomography (CT) is a preferred imaging modality for detecting lung cancer, as it offers detailed visualization of tumor structure and growth. With the advancement of deep learning, the automated identification of lung cancer from CT images has become increasingly effective. This study proposes a novel lung cancer detection framework using a Flower Pollination Algorithm (FPA)-based weighted ensemble of three high-performing pretrained Convolutional Neural Networks (CNNs): VGG16, ResNet101V2, and InceptionV3. Unlike traditional ensemble approaches that assign static or equal weights, the FPA adaptively optimizes the contribution of each CNN based on validation performance. This dynamic weighting significantly enhances diagnostic accuracy. The proposed FPA-based ensemble achieved an impressive accuracy of 98.2%, precision of 98.4%, recall of 98.6%, and an F1 score of 0.985 on the test dataset. In comparison, the best individual CNN (VGG16) achieved 94.6% accuracy, highlighting the superiority of the ensemble approach. These results confirm the model's effectiveness in accurate and reliable cancer diagnosis. The proposed study demonstrates the potential of deep learning and neural networks to transform cancer diagnosis, helping early detection and improving treatment outcomes.

MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting.

Safari M, Wang S, Eidex Z, Li Q, Qiu RLJ, Middlebrooks EH, Yu DS, Yang X

pubmed logopapersJun 3 2025
Magnetic resonance imaging (MRI) is essential in clinical and research contexts, providing exceptional soft-tissue contrast. However, prolonged acquisition times often lead to patient discomfort and motion artifacts. Diffusion-based deep learning super-resolution (SR) techniques reconstruct high-resolution (HR) images from low-resolution (LR) pairs, but they involve extensive sampling steps, limiting real-time application. To overcome these issues, this study introduces a residual error-shifting mechanism markedly reducing sampling steps while maintaining vital anatomical details, thereby accelerating MRI reconstruction. We developed Res-SRDiff, a novel diffusion-based SR framework incorporating residual error shifting into the forward diffusion process. This integration aligns the degraded HR and LR distributions, enabling efficient HR image reconstruction. We evaluated Res-SRDiff using ultra-high-field brain T1 MP2RAGE maps and T2-weighted prostate images, benchmarking it against Bicubic, Pix2pix, CycleGAN, SPSR, I2SB, and TM-DDPM methods. Quantitative assessments employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), gradient magnitude similarity deviation (GMSD), and learned perceptual image patch similarity (LPIPS). Additionally, we qualitatively and quantitatively assessed the proposed framework's individual components through an ablation study and conducted a Likert-based image quality evaluation. Res-SRDiff significantly surpassed most comparison methods regarding PSNR, SSIM, and GMSD for both datasets, with statistically significant improvements (p-values≪0.05). The model achieved high-fidelity image reconstruction using only four sampling steps, drastically reducing computation time to under one second per slice. In contrast, traditional methods like TM-DDPM and I2SB required approximately 20 and 38 seconds per slice, respectively. Qualitative analysis showed Res-SRDiff effectively preserved fine anatomical details and lesion morphologies. The Likert study indicated that our method received the highest scores, 4.14±0.77(brain) and 4.80±0.40(prostate). Res-SRDiff demonstrates efficiency and accuracy, markedly improving computational speed and image quality. Incorporating residual error shifting into diffusion-based SR facilitates rapid, robust HR image reconstruction, enhancing clinical MRI workflow and advancing medical imaging research. Code available at https://github.com/mosaf/Res-SRDiff.

Enhancing Lesion Detection in Inflammatory Myelopathies: A Deep Learning-Reconstructed Double Inversion Recovery MRI Approach.

Fang Q, Yang Q, Wang B, Wen B, Xu G, He J

pubmed logopapersJun 3 2025
The imaging of inflammatory myelopathies has advanced significantly across time, with MRI techniques playing a pivotal role in enhancing lesion detection. However, the impact of deep learning (DL)-based reconstruction on 3D double inversion recovery (DIR) imaging for inflammatory myelopathies remains unassessed. This study aimed to compare the acquisition time, image quality, diagnostic confidence, and lesion detection rates among sagittal T2WI, standard DIR, and DL-reconstructed DIR in patients with inflammatory myelopathies. In this observational study, patients diagnosed with inflammatory myelopathies were recruited between June 2023 and March 2024. Each patient underwent sagittal conventional TSE sequences and standard 3D DIR (T2WI and standard 3D DIR were used as references for comparison), followed by an undersampled accelerated double inversion recovery deep learning (DIR<sub>DL</sub>) examination. Three neuroradiologists evaluated the images using a 4-point Likert scale (from 1 to 4) for overall image quality, perceived SNR, sharpness, artifacts, and diagnostic confidence. The acquisition times and lesion detection rates were also compared among the acquisition protocols. A total of 149 participants were evaluated (mean age, 40.6 [SD, 16.8] years; 71 women). The median acquisition time for DIR<sub>DL</sub> was significantly lower than for standard DIR (298 seconds [interquartile range, 288-301 seconds] versus 151 seconds [interquartile range, 148-155 seconds]; <i>P</i> < .001), showing a 49% time reduction. DIR<sub>DL</sub> images scored higher in overall quality, perceived SNR, and artifact noise reduction (all <i>P</i> < .001). There were no significant differences in sharpness (<i>P</i> = .07) or diagnostic confidence (<i>P</i> = .06) between the standard DIR and DIR<sub>DL</sub> protocols. Additionally, DIR<sub>DL</sub> detected 37% more lesions compared with T2WI (300 versus 219; <i>P</i> < .001). DIR<sub>DL</sub> significantly reduces acquisition time and improves image quality compared with standard DIR, without compromising diagnostic confidence. Additionally, DIR<sub>DL</sub> enhances lesion detection in patients with inflammatory myelopathies, making it a valuable tool in clinical practice. These findings underscore the potential for incorporating DIR<sub>DL</sub> into future imaging guidelines.

A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR.

Allaw S, Khabaz K, Given TC, Montas D, Alcazar-Felix RJ, Srinath A, Kass-Hout T, Carroll TJ, Hurley MC, Polster SP

pubmed logopapersJun 3 2025
Traditional guidance for intracranial aneurysm (IA) management is dichotomized by rupture status. Fundamental to the management of ruptured aneurysm is the detection and treatment of SAH, along with securing the aneurysm by the safest technique. On the other hand, unruptured aneurysms first require a careful assessment of their natural history versus treatment risk, including an imaging assessment of aneurysm size, location, and morphology, along with additional evidence-based risk factors such as smoking, hypertension, and family history. Unfortunately, a large proportion of ruptured aneurysms are in the lower risk size category (<7 mm), putting a premium on discovering a more refined noninvasive biomarker to detect and stratify aneurysm instability before rupture. In this review of aneurysm work-up, we cover the gamut of established imaging modalities (eg, CT, CTA, DSA, FLAIR, 3D TOF-MRA, contrast-enhanced-MRA) as well as more novel MR techniques (MR vessel wall imaging, dynamic contrast-enhanced MRI, computational fluid dynamics). Additionally, we evaluate the current landscape of artificial intelligence software and its integration into diagnostic and risk-stratification pipelines for IAs. These advanced MR techniques, increasingly complemented with artificial intelligence models, offer a paradigm shift by evaluating factors beyond size and morphology, including vessel wall inflammation, permeability, and hemodynamics. Additionally, we provide our institution's scan parameters for many of these modalities as a reference. Ultimately, this review provides an organized, up-to-date summary of the array of available modalities/sequences for IA imaging to help build protocols focused on IA characterization.

Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.

Chang S, Benson JC, Lane JI, Bruesewitz MR, Swicklik JR, Thorne JE, Koons EK, Carlson ML, McCollough CH, Leng S

pubmed logopapersJun 3 2025
Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating the use of smoother reconstruction kernels that reduce resolution below the 0.125-mm maximum spatial resolution. A denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization to address this issue. With institutional review board approval, the CNN was trained on 6 patient cases of clinical temporal bone imaging (1885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha). Images were reconstructed using quantum iterative reconstruction at strength 3 (QIR3) with both a clinical routine kernel (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1 kernel. For each case, three series of images (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) were randomized for review by 2 neuroradiologists assessing the overall quality and delineating the modiolus, stapes footplate, and incudomallear joint. The CNN reduced noise by 80% compared with Hr96-QIR3 and by 50% relative to Hr84-QIR3, while maintaining high resolution. Compared with the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 to 47.35 HU) and improved its structural similarity index (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (<i>P</i> < .001). Readers preferred Hr96-CNN for all 3 structures. The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of the sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomic visualization.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

petBrain: A New Pipeline for Amyloid, Tau Tangles and Neurodegeneration Quantification Using PET and MRI

Pierrick Coupé, Boris Mansencal, Floréal Morandat, Sergio Morell-Ortega, Nicolas Villain, Jose V. Manjón, Vincent Planche

arxiv logopreprintJun 3 2025
INTRODUCTION: Quantification of amyloid plaques (A), neurofibrillary tangles (T2), and neurodegeneration (N) using PET and MRI is critical for Alzheimer's disease (AD) diagnosis and prognosis. Existing pipelines face limitations regarding processing time, variability in tracer types, and challenges in multimodal integration. METHODS: We developed petBrain, a novel end-to-end processing pipeline for amyloid-PET, tau-PET, and structural MRI. It leverages deep learning-based segmentation, standardized biomarker quantification (Centiloid, CenTauR, HAVAs), and simultaneous estimation of A, T2, and N biomarkers. The pipeline is implemented as a web-based platform, requiring no local computational infrastructure or specialized software knowledge. RESULTS: petBrain provides reliable and rapid biomarker quantification, with results comparable to existing pipelines for A and T2. It shows strong concordance with data processed in ADNI databases. The staging and quantification of A/T2/N by petBrain demonstrated good agreement with CSF/plasma biomarkers, clinical status, and cognitive performance. DISCUSSION: petBrain represents a powerful and openly accessible platform for standardized AD biomarker analysis, facilitating applications in clinical research.

Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks.

Cerrone D, Riccobelli D, Gazzoni S, Vitullo P, Ballarin F, Falco J, Acerbi F, Manzoni A, Zunino P, Ciarletta P

pubmed logopapersJun 3 2025
Glioblastoma is among the most aggressive brain tumors in adults, characterized by patient-specific invasion patterns driven by the underlying brain microstructure. In this work, we present a proof-of-concept for a mathematical model of GBL growth, enabling real-time prediction and patient-specific parameter identification from longitudinal neuroimaging data. The framework exploits a diffuse-interface mathematical model to describe the tumor evolution and a reduced-order modeling strategy, relying on proper orthogonal decomposition, trained on synthetic data derived from patient-specific brain anatomies reconstructed from magnetic resonance imaging and diffusion tensor imaging. A neural network surrogate learns the inverse mapping from tumor evolution to model parameters, achieving significant computational speed-up while preserving high accuracy. To ensure robustness and interpretability, we perform both global and local sensitivity analyses, identifying the key biophysical parameters governing tumor dynamics and assessing the stability of the inverse problem solution. These results establish a methodological foundation for future clinical deployment of patient-specific digital twins in neuro-oncology.
Page 95 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.