Sort by:
Page 38 of 39382 results

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

From Pixels to Polygons: A Survey of Deep Learning Approaches for Medical Image-to-Mesh Reconstruction

Fengming Lin, Arezoo Zakeri, Yidan Xue, Michael MacRaild, Haoran Dou, Zherui Zhou, Ziwei Zou, Ali Sarrami-Foroushani, Jinming Duan, Alejandro F. Frangi

arxiv logopreprintMay 6 2025
Deep learning-based medical image-to-mesh reconstruction has rapidly evolved, enabling the transformation of medical imaging data into three-dimensional mesh models that are critical in computational medicine and in silico trials for advancing our understanding of disease mechanisms, and diagnostic and therapeutic techniques in modern medicine. This survey systematically categorizes existing approaches into four main categories: template models, statistical models, generative models, and implicit models. Each category is analysed in detail, examining their methodological foundations, strengths, limitations, and applicability to different anatomical structures and imaging modalities. We provide an extensive evaluation of these methods across various anatomical applications, from cardiac imaging to neurological studies, supported by quantitative comparisons using standard metrics. Additionally, we compile and analyze major public datasets available for medical mesh reconstruction tasks and discuss commonly used evaluation metrics and loss functions. The survey identifies current challenges in the field, including requirements for topological correctness, geometric accuracy, and multi-modality integration. Finally, we present promising future research directions in this domain. This systematic review aims to serve as a comprehensive reference for researchers and practitioners in medical image analysis and computational medicine.

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models

Matthias Höfler, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin, Gundolf Haase, Gernot Plank, Federica Caforio

arxiv logopreprintMay 6 2025
Active stress models in cardiac biomechanics account for the mechanical deformation caused by muscle activity, thus providing a link between the electrophysiological and mechanical properties of the tissue. The accurate assessment of active stress parameters is fundamental for a precise understanding of myocardial function but remains difficult to achieve in a clinical setting, especially when only displacement and strain data from medical imaging modalities are available. This work investigates, through an in-silico study, the application of physics-informed neural networks (PINNs) for inferring active contractility parameters in time-dependent cardiac biomechanical models from these types of imaging data. In particular, by parametrising the sought state and parameter field with two neural networks, respectively, and formulating an energy minimisation problem to search for the optimal network parameters, we are able to reconstruct in various settings active stress fields in the presence of noise and with a high spatial resolution. To this end, we also advance the vanilla PINN learning algorithm with the use of adaptive weighting schemes, ad-hoc regularisation strategies, Fourier features, and suitable network architectures. In addition, we thoroughly analyse the influence of the loss weights in the reconstruction of active stress parameters. Finally, we apply the method to the characterisation of tissue inhomogeneities and detection of fibrotic scars in myocardial tissue. This approach opens a new pathway to significantly improve the diagnosis, treatment planning, and management of heart conditions associated with cardiac fibrosis.

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

Sheng Z, Ji S, Chen Y, Mi Z, Yu H, Zhang L, Wan S, Song N, Shen Z, Zhang P

pubmed logopapersMay 6 2025
Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation. A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.

Enhancing Breast Cancer Detection Through Optimized Thermal Image Analysis Using PRMS-Net Deep Learning Approach.

Khan M, Su'ud MM, Alam MM, Karimullah S, Shaik F, Subhan F

pubmed logopapersMay 6 2025
Breast cancer has remained one of the most frequent and life-threatening cancers in females globally, putting emphasis on better diagnostics in its early stages to solve the problem of therapy effectiveness and survival. This work enhances the assessment of breast cancer by employing progressive residual networks (PRN) and ResNet-50 within the framework of Progressive Residual Multi-Class Support Vector Machine-Net. Built on concepts of deep learning, this creative integration optimizes feature extraction and raises the bar for classification effectiveness, earning an almost perfect 99.63% on our tests. These findings indicate that PRMS-Net can serve as an efficient and reliable diagnostic tool for early breast cancer detection, aiding radiologists in improving diagnostic accuracy and reducing false positives. The separation of the data into different segments is possible to determine the architecture's reliability using the fivefold cross-validation approach. The total variability of precision, recall, and F1 scores clearly depicted in the box plot also endorse the competency of the model for marking proper sensitivity and specificity-highly required for combating false positive and false negative cases in real clinical practice. The evaluation of error distribution strengthens the model's rationale by giving validation of practical application in medical contexts of image processing. The high levels of feature extraction sensitivity together with highly sophisticated classification methods make PRMS-Net a powerful tool that can be used in improving the early detection of breast cancer and subsequent patient prognosis.

Artificial intelligence demonstrates potential to enhance orthopaedic imaging across multiple modalities: A systematic review.

Longo UG, Lalli A, Nicodemi G, Pisani MG, De Sire A, D'Hooghe P, Nazarian A, Oeding JF, Zsidai B, Samuelsson K

pubmed logopapersApr 1 2025
While several artificial intelligence (AI)-assisted medical imaging applications are reported in the recent orthopaedic literature, comparison of the clinical efficacy and utility of these applications is currently lacking. The aim of this systematic review is to evaluate the effectiveness and reliability of AI applications in orthopaedic imaging, focusing on their impact on diagnostic accuracy, image segmentation and operational efficiency across various imaging modalities. Based on the PRISMA guidelines, a comprehensive literature search of PubMed, Cochrane and Scopus databases was performed, using combinations of keywords and MeSH descriptors ('AI', 'ML', 'deep learning', 'orthopaedic surgery' and 'imaging') from inception to March 2024. Included were studies published between September 2018 and February 2024, which evaluated machine learning (ML) model effectiveness in improving orthopaedic imaging. Studies with insufficient data regarding the output variable used to assess the reliability of the ML model, those applying deterministic algorithms, unrelated topics, protocol studies, and other systematic reviews were excluded from the final synthesis. The Joanna Briggs Institute (JBI) Critical Appraisal tool and the Risk Of Bias In Non-randomised Studies-of Interventions (ROBINS-I) tool were applied for the assessment of bias among the included studies. The 53 included studies reported the use of 11.990.643 images from several diagnostic instruments. A total of 39 studies reported details in terms of the Dice Similarity Coefficient (DSC), while both accuracy and sensitivity were documented across 15 studies. Precision was reported by 14, specificity by nine, and the F1 score by four of the included studies. Three studies applied the area under the curve (AUC) method to evaluate ML model performance. Among the studies included in the final synthesis, Convolutional Neural Networks (CNN) emerged as the most frequently applied category of ML models, present in 17 studies (32%). The systematic review highlights the diverse application of AI in orthopaedic imaging, demonstrating the capability of various machine learning models in accurately segmenting and analysing orthopaedic images. The results indicate that AI models achieve high performance metrics across different imaging modalities. However, the current body of literature lacks comprehensive statistical analysis and randomized controlled trials, underscoring the need for further research to validate these findings in clinical settings. Systematic Review; Level of evidence IV.

SA-UMamba: Spatial attention convolutional neural networks for medical image segmentation.

Liu L, Huang Z, Wang S, Wang J, Liu B

pubmed logopapersJan 1 2025
Medical image segmentation plays an important role in medical diagnosis and treatment. Most recent medical image segmentation methods are based on a convolutional neural network (CNN) or Transformer model. However, CNN-based methods are limited by locality, whereas Transformer-based methods are constrained by the quadratic complexity of attention computations. Alternatively, the state-space model-based Mamba architecture has garnered widespread attention owing to its linear computational complexity for global modeling. However, Mamba and its variants are still limited in their ability to extract local receptive field features. To address this limitation, we propose a novel residual spatial state-space (RSSS) block that enhances spatial feature extraction by integrating global and local representations. The RSSS block combines the Mamba module for capturing global dependencies with a receptive field attention convolution (RFAC) module to extract location-sensitive local patterns. Furthermore, we introduce a residual adjust strategy to dynamically fuse global and local information, improving spatial expressiveness. Based on the RSSS block, we design a U-shaped SA-UMamba segmentation framework that effectively captures multi-scale spatial context across different stages. Experiments conducted on the Synapse, ISIC17, ISIC18 and CVC-ClinicDB datasets validate the segmentation performance of our proposed SA-UMamba framework.

Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.

Wang H, Lu J, Yang S, Xiao Y, He L, Dou Z, Zhao W, Yang L

pubmed logopapersJan 1 2025
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.
Page 38 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.