Sort by:
Page 1 of 542 results
Next

Foundation models for radiology: fundamentals, applications, opportunities, challenges, risks, and prospects.

Akinci D'Antonoli T, Bluethgen C, Cuocolo R, Klontzas ME, Ponsiglione A, Kocak B

pubmed logopapersJul 8 2025
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-training and efficient fine-tuning, FMs can support diverse applications, including image interpretation, report generation, integrative diagnostics combining imaging with clinical/laboratory data, and synthetic data creation, holding significant promise for advancements in precision medicine. However, clinical translation of FMs faces several substantial challenges. Key concerns include the inherent opacity of model decision-making processes, environmental and social sustainability issues, risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent stochasticity and the risk of hallucination. This international collaborative effort provides a comprehensive overview of the fundamentals, applications, opportunities, challenges, and prospects of FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.

Early warning and stratification of the elderly cardiopulmonary dysfunction-related diseases: multicentre prospective study protocol.

Zhou X, Jin Q, Xia Y, Guan Y, Zhang Z, Guo Z, Liu Z, Li C, Bai Y, Hou Y, Zhou M, Liao WH, Lin H, Wang P, Liu S, Fan L

pubmed logopapersJul 5 2025
In China, there is a lack of standardised clinical imaging databases for multidimensional evaluation of cardiopulmonary diseases. To address this gap, this study protocol launched a project to build a clinical imaging technology integration and a multicentre database for early warning and stratification of cardiopulmonary dysfunction in the elderly. This study employs a cross-sectional design, enrolling over 6000 elderly participants from five regions across China to evaluate cardiopulmonary function and related diseases. Based on clinical criteria, participants are categorized into three groups: a healthy cardiopulmonary function group, a functional decrease group and an established cardiopulmonary diseases group. All subjects will undergo comprehensive assessments including chest CT scans, echocardiography, and laboratory examinations. Additionally, at least 50 subjects will undergo cardiopulmonary exercise testing (CPET). By leveraging artificial intelligence technology, multimodal data will be integrated to establish reference ranges for cardiopulmonary function in the elderly population, as well as to develop early-warning models and severity grading standard models. The study has been approved by the local ethics committee of Shanghai Changzheng Hospital (approval number: 2022SL069A). All the participants will sign the informed consent. The results will be disseminated through peer-reviewed publications and conferences.

PanTS: The Pancreatic Tumor Segmentation Dataset

Wenxuan Li, Xinze Zhou, Qi Chen, Tianyu Lin, Pedro R. A. S. Bassi, Szymon Plotka, Jaroslaw B. Cwikla, Xiaoxi Chen, Chen Ye, Zheren Zhu, Kai Ding, Heng Li, Kang Wang, Yang Yang, Yucheng Tang, Daguang Xu, Alan L. Yuille, Zongwei Zhou

arxiv logopreprintJul 2 2025
PanTS is a large-scale, multi-institutional dataset curated to advance research in pancreatic CT analysis. It contains 36,390 CT scans from 145 medical centers, with expert-validated, voxel-wise annotations of over 993,000 anatomical structures, covering pancreatic tumors, pancreas head, body, and tail, and 24 surrounding anatomical structures such as vascular/skeletal structures and abdominal/thoracic organs. Each scan includes metadata such as patient age, sex, diagnosis, contrast phase, in-plane spacing, slice thickness, etc. AI models trained on PanTS achieve significantly better performance in pancreatic tumor detection, localization, and segmentation compared to those trained on existing public datasets. Our analysis indicates that these gains are directly attributable to the 16x larger-scale tumor annotations and indirectly supported by the 24 additional surrounding anatomical structures. As the largest and most comprehensive resource of its kind, PanTS offers a new benchmark for developing and evaluating AI models in pancreatic CT analysis.

A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs

Niccolò McConnell, Pardeep Vasudev, Daisuke Yamada, Daryl Cheng, Mehran Azimbagirad, John McCabe, Shahab Aslani, Ahmed H. Shahin, Yukun Zhou, The SUMMIT Consortium, Andre Altmann, Yipeng Hu, Paul Taylor, Sam M. Janes, Daniel C. Alexander, Joseph Jacob

arxiv logopreprintJul 2 2025
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.

A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization

Mohammadreza Amirian, Michael Bach, Oscar Jimenez-del-Toro, Christoph Aberle, Roger Schaer, Vincent Andrearczyk, Jean-Félix Maestrati, Maria Martin Asiain, Kyriakos Flouris, Markus Obmann, Clarisse Dromain, Benoît Dufour, Pierre-Alexandre Alois Poletti, Hendrik von Tengg-Kobligk, Rolf Hügli, Martin Kretzschmar, Hatem Alkadhi, Ender Konukoglu, Henning Müller, Bram Stieltjes, Adrien Depeursinge

arxiv logopreprintJul 2 2025
Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.

Lung cancer screening with low-dose CT: definition of positive, indeterminate, and negative screen results. A nodule management recommendation from the European Society of Thoracic Imaging.

Snoeckx A, Silva M, Prosch H, Biederer J, Frauenfelder T, Gleeson F, Jacobs C, Kauczor HU, Parkar AP, Schaefer-Prokop C, Prokop M, Revel MP

pubmed logopapersJul 1 2025
Early detection of lung cancer through low-dose CT lung cancer screening in a high-risk population has proven to reduce lung cancer-specific mortality. Nodule management plays a pivotal role in early detection and further diagnostic approaches. The European Society of Thoracic Imaging (ESTI) has established a nodule management recommendation to improve the handling of pulmonary nodules detected during screening. For solid nodules, the primary method for assessing the likelihood of malignancy is to monitor nodule growth using volumetry software. For subsolid nodules, the aggressiveness is determined by measuring the solid part. The ESTI-recommendation enhances existing protocols but puts a stronger focus on lesion aggressiveness. The main goals are to minimise the overall number of follow-up examinations while preventing the risk of a major stage shift and reducing the risk of overtreatment. KEY POINTS: Question Assessment of nodule growth and management according to guidelines is essential in lung cancer screening. Findings Assessment of nodule aggressiveness defines follow-up in lung cancer screening. Clinical relevance The ESTI nodule management recommendation aims to reduce follow-up examinations while preventing major stage shift and overtreatment.

Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges.

Poon EG, Lemak CH, Rojas JC, Guptill J, Classen D

pubmed logopapersJul 1 2025
The US healthcare system faces significant challenges, including clinician burnout, operational inefficiencies, and concerns about patient safety. Artificial intelligence (AI), particularly generative AI, has the potential to address these challenges, but its adoption, effectiveness, and barriers to implementation are not well understood. To evaluate the current state of AI adoption in US healthcare systems, assess successes and barriers to implementation during the early generative AI era. This cross-sectional survey was conducted in Fall 2024, and included 67 health systems members of the Scottsdale Institute, a collaborative of US non-profit healthcare organizations. Forty-three health systems completed the survey (64% response rate). Respondents provided data on the deployment status and perceived success of 37 AI use cases across 10 categories. The primary outcomes were the extent of AI use case development, piloting, or deployment, the degree of reported success for AI use cases, and the most significant barriers to adoption. Across the 43 responding health systems, AI adoption and perceptions of success varied significantly. Ambient Notes, a generative AI tool for clinical documentation, was the only use case with 100% of respondents reporting adoption activities, and 53% reported a high degree of success with using AI for Clinical Documentation. Imaging and radiology emerged as the most widely deployed clinical AI use case, with 90% of organizations reporting at least partial deployment, although successes with diagnostic use cases were limited. Similarly, many organizations have deployed AI for clinical risk stratification such as early sepsis detection, but only 38% report high success in this area. Immature AI tools were identified a significant barrier to adoption, cited by 77% of respondents, followed by financial concerns (47%) and regulatory uncertainty (40%). Ambient Notes is rapidly advancing in US healthcare systems and demonstrating early success. Other AI use cases show varying degrees of adoption and success, constrained by barriers such as immature AI tools, financial concerns, and regulatory uncertainty. Addressing these challenges through robust evaluations, shared strategies, and governance models will be essential to ensure effective integration and adoption of AI into healthcare practice.

AI Model Passport: Data and System Traceability Framework for Transparent AI in Health

Varvara Kalokyri, Nikolaos S. Tachos, Charalampos N. Kalantzopoulos, Stelios Sfakianakis, Haridimos Kondylakis, Dimitrios I. Zaridis, Sara Colantonio, Daniele Regge, Nikolaos Papanikolaou, The ProCAncer-I consortium, Konstantinos Marias, Dimitrios I. Fotiadis, Manolis Tsiknakis

arxiv logopreprintJun 27 2025
The increasing integration of Artificial Intelligence (AI) into health and biomedical systems necessitates robust frameworks for transparency, accountability, and ethical compliance. Existing frameworks often rely on human-readable, manual documentation which limits scalability, comparability, and machine interpretability across projects and platforms. They also fail to provide a unique, verifiable identity for AI models to ensure their provenance and authenticity across systems and use cases, limiting reproducibility and stakeholder trust. This paper introduces the concept of the AI Model Passport, a structured and standardized documentation framework that acts as a digital identity and verification tool for AI models. It captures essential metadata to uniquely identify, verify, trace and monitor AI models across their lifecycle - from data acquisition and preprocessing to model design, development and deployment. In addition, an implementation of this framework is presented through AIPassport, an MLOps tool developed within the ProCAncer-I EU project for medical imaging applications. AIPassport automates metadata collection, ensures proper versioning, decouples results from source scripts, and integrates with various development environments. Its effectiveness is showcased through a lesion segmentation use case using data from the ProCAncer-I dataset, illustrating how the AI Model Passport enhances transparency, reproducibility, and regulatory readiness while reducing manual effort. This approach aims to set a new standard for fostering trust and accountability in AI-driven healthcare solutions, aspiring to serve as the basis for developing transparent and regulation compliant AI systems across domains.

[The analysis of invention patents in the field of artificial intelligent medical devices].

Zhang T, Chen J, Lu Y, Xu D, Yan S, Ouyang Z

pubmed logopapersJun 25 2025
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.
Page 1 of 542 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.