Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.
Authors
Affiliations (2)
Affiliations (2)
- Department of Pain Management, Xuanwu Hospital Capital Medical University, Beijing, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.
Abstract
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.