Sort by:
Page 222 of 2922917 results

tUbe net: a generalisable deep learning tool for 3D vessel segmentation

Holroyd, N. A., Li, Z., Walsh, C., Brown, E. E., Shipley, R. J., Walker-Samuel, S.

biorxiv logopreprintMay 26 2025
Deep learning has become an invaluable tool for bioimage analysis but, while open-source cell annotation software such as cellpose are widely used, an equivalent tool for three-dimensional (3D) vascular annotation does not exist. With the vascular system being directly impacted by a broad range of diseases, there is significant medical interest in quantitative analysis for vascular imaging. However, existing deep learning approaches for this task are specialised to particular tissue types or imaging modalities. We present a new deep learning model for segmentation of vasculature that is generalisable across tissues, modalities, scales and pathologies. To create a generalisable model, a 3D convolutional neural network was trained using data from multiple modalities including optical imaging, computational tomography and photoacoustic imaging. Through this varied training set, the model was forced to learn common features of vessels cross-modality and scale. Following this, the general model was fine-tuned to different applications with a minimal amount of manually labelled ground truth data. It was found that the general model could be specialised to segment new datasets, with a high degree of accuracy, using as little as 0.3% of the volume of that dataset for fine-tuning. As such, this model enables users to produce accurate segmentations of 3D vascular networks without the need to label large amounts of training data.

Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Li L, Yang D, Wu Y, Sun R, Qin Y, Kang M, Deng X, Bu M, Li Z, Zeng Z, Zeng X, Jiang M, Chen BT

pubmed logopapersMay 26 2025
To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (NPC). This prospective single-center study enrolled patients with NPC and the study assessment included both DECT and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Radiomics features were extracted from each region of interest (ROI) for cervical lymph nodes using arterial and venous phase images at 100 keV and 150 keV, either individually as non-fusion models or combined as fusion models on the DECT images. The performance of the random forest (RF) models, combined with radiomics features, was evaluated by area under the receiver operating characteristic curve (AUC) analysis. DeLong's test was employed to compare model performances, while decision curve analysis (DCA) assessed the clinical utility of the predictive models. Sixty-six patients with NPC were included for analysis, which was divided into a training set (n = 42) and a validation set (n = 22). A total of 13 radiomic models were constructed (4 non-fusion models and 9 fusion models). In the non-fusion models, when the threshold value exceeded 0.4, the venous phase at 100 keV (V100) (AUC, 0.9667; 95 % confidence interval [95 % CI], 0.9363-0.9901) model exhibited a higher net benefit than other non-fusion models. The V100 + V150 fusion model achieved the best performance, with an AUC of 0.9697 (95 % CI, 0.9393-0.9907). DECT-based radiomics effectively diagnosed CLNM in patients with NPC and may potentially be a valuable tool for clinical decision-making. This study improved pre-operative evaluation, treatment strategy selection, and prognostic evaluation for patients with nasopharyngeal carcinoma by combining DECT and radiomics to predict cervical lymph node status prior to treatment.

Clinical, radiological, and radiomics feature-based explainable machine learning models for prediction of neurological deterioration and 90-day outcomes in mild intracerebral hemorrhage.

Zeng W, Chen J, Shen L, Xia G, Xie J, Zheng S, He Z, Deng L, Guo Y, Yang J, Lv Y, Qin G, Chen W, Yin J, Wu Q

pubmed logopapersMay 26 2025
The risks and prognosis of mild intracerebral hemorrhage (ICH) patients were easily overlooked by clinicians. Our goal was to use machine learning (ML) methods to predict mild ICH patients' neurological deterioration (ND) and 90-day prognosis. This prospective study recruited 257 patients with mild ICH for this study. After exclusions, 148 patients were included in the ND study and 144 patients in the 90-day prognosis study. We trained five ML models using filtered data, including clinical, traditional imaging, and radiomics indicators based on non-contrast computed tomography (NCCT). Additionally, we incorporated the Shapley Additive Explanation (SHAP) method to display key features and visualize the decision-making process of the model for each individual. A total of 21 (14.2%) mild ICH patients developed ND, and 35 (24.3%) mild ICH patients had a 90-day poor prognosis. In the validation set, the support vector machine (SVM) models achieved an AUC of 0.846 (95% confidence intervals (CI), 0.627-1.000) and an F1-score of 0.667 for predicting ND, and an AUC of 0.970 (95% CI, 0.928-1.000), and an F1-score of 0.846 for predicting 90-day prognosis. The SHAP analysis results indicated that several clinical features, the island sign, and the radiomics features of the hematoma were of significant value in predicting ND and 90-day prognosis. The ML models, constructed using clinical, traditional imaging, and radiomics indicators, demonstrated good classification performance in predicting ND and 90-day prognosis in patients with mild ICH, and have the potential to serve as an effective tool in clinical practice. Not applicable.

Can intraoperative improvement of radial endobronchial ultrasound imaging enhance the diagnostic yield in peripheral pulmonary lesions?

Nishida K, Ito T, Iwano S, Okachi S, Nakamura S, Chrétien B, Chen-Yoshikawa TF, Ishii M

pubmed logopapersMay 26 2025
Data regarding the diagnostic efficacy of radial endobronchial ultrasound (R-EBUS) findings obtained via transbronchial needle aspiration (TBNA)/biopsy (TBB) with endobronchial ultrasonography with a guide sheath (EBUS-GS) for peripheral pulmonary lesions (PPLs) are lacking. We evaluated whether intraoperative probe repositioning improves R-EBUS imaging and affects diagnostic yield and safety of EBUS-guided sampling for PPLs. We retrospectively studied 363 patients with PPLs who underwent TBNA/TBB (83 lesions) or TBB (280 lesions) using EBUS-GS. Based on the R-EBUS findings before and after these procedures, patients were categorized into three groups: the improved R-EBUS image (n = 52), unimproved R-EBUS image (n = 69), and initial within-lesion groups (n = 242). The impact of improved R-EBUS findings on diagnostic yield and complications was assessed using multivariable logistic regression, adjusting for lesion size, lesion location, and the presence of a bronchus leading to the lesion on CT. A separate exploratory random-forest model with SHAP analysis was used to explore factors associated with successful repositioning in lesions not initially "within." The diagnostic yield in the improved R-EBUS group was significantly higher than that in the unimproved R-EBUS group (76.9% vs. 46.4%, p = 0.001). The regression model revealed that the improvement in intraoperative R-EBUS findings was associated with a high diagnostic yield (odds ratio: 3.55, 95% confidence interval, 1.57-8.06, p = 0.002). Machine learning analysis indicated that inner lesion location and radiographic visibility were the most influential predictors of successful repositioning. The complication rates were similar across all groups (total complications: 5.8% vs. 4.3% vs. 6.2%, p = 0.943). Improved R-EBUS findings during TBNA/TBB or TBB with EBUS-GS were associated with a high diagnostic yield without an increase in complications, even when the initial R-EBUS findings were inadequate. This suggests that repeated intraoperative probe repositioning can safely boost outcomes.

Two birds with one stone: pre-TAVI coronary CT angiography combined with FFR helps screen for coronary stenosis.

Wang R, Pan D, Sun X, Yang G, Yao J, Shen X, Xiao W

pubmed logopapersMay 26 2025
Since coronary artery disease (CAD) is a common comorbidity in patients with aortic valve stenosis, invasive coronary angiography (ICA) can be avoided if significant CAD can be screened with the non-invasive coronary CT angiography (cCTA). This study aims to evaluate the ability of machine learning-based CT coronary fractional flow reserve (CT-FFR) derived from cCTA to aid in the diagnosis of comorbid CAD in patients undergoing transcatheter aortic valve implantation (TAVI). A total of 100 patients who underwent both cCTA and ICA assessments prior to TAVI procedure between January 2021 and July 2023 were included. Coronary stenosis was assessed using both cCTA data and machine learning-generated CT-FFR image information for patients/major coronary vessels. Coronary lesions with CT-FFR ≤ 0.80 were defined as hemodynamically significant, with ICA serving as the diagnostic gold standard. A total of 400 major coronary vessels were identified in 100 eligible patients who underwent TAVI. CT-FFR was 86.4% sensitive and 66.1% specific to diagnose CAD, with a positive predictive value (PPV) of 66.7% and a negative predictive value (NPV) of 86.0%. The diagnostic accuracy (Acc) was 75.0%, with a false positive rate (FPR) of 33.9%. At the vessel level, CT-FFR showed a sensitivity of 77.6% and a specificity of 76.9%. The PPV was 44.0% and the NPV was 93.6%. The Acc was 77.0% and the FPR was 23.1%. For all patient/vessel units, CT-FFR outperformed cCTA. Machine learning-based CT-FFR can effectively detect coronary hemodynamic abnormalities. Combined with preoperative cCTA in TAVI patients, it is an effective tool to rule out significant CAD, reducing unnecessary coronary angiography in this high-risk population. Not applicable.

A novel MRI-based deep learning imaging biomarker for comprehensive assessment of the lenticulostriate artery-neural complex.

Song Y, Jin Y, Wei J, Wang J, Zheng Z, Wang Y, Zeng R, Lu W, Huang B

pubmed logopapersMay 26 2025
To develop a deep learning network for extracting features from the blood-supplying regions of the lenticulostriate artery (LSA) and to establish these features as an imaging biomarker for the comprehensive assessment of the lenticulostriate artery-neural complex (LNC). Automatic segmentation of brain regions on T1-weighted images was performed, followed by the development of the ResNet18 framework to extract and visualize deep learning features from three regions of interest (ROIs). The root mean squared error (RMSE) was then used to assess the correlation between these features and fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and cerebral blood flow (CBF) values from arterial spin labeling (ASL). The correlation of these features with LSA root numbers and three disease categories was further validated using fine-tuning classification (Task1 and Task2). Seventy-nine patients were enrolled and classified into three groups. No significant differences were found in the number of LSA roots between the right and left hemispheres, nor in the FA and CBF values of the ROIs. The RMSE loss, relative to the mean FA and CBF values across different ROI inputs, ranged from 0.154 to 0.213%. The model's accuracy in Task1 and Task2 fine-tuning classification reached 100%. Deep learning features extracted from the basal ganglia nuclei effectively reflect cerebrovascular and neurological functions and reveal the damage status of the LSA. This approach holds promise as a novel imaging biomarker for the comprehensive assessment of the LNC.

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

Song S, Wang S, Gao J, Zhu L, Zhang W, Wang Y, Wang D, Zhang D, Wang K

pubmed logopapersMay 26 2025
Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abnormalities in MDD. However, predicting treatment response remains challenging. This study leverages inter-brain similarity from sMRI as a novel feature to enhance prediction accuracy and explore disease mechanisms. The method's generalizability across adult and adolescent cohorts is also evaluated. The study included 172 participants. Based on remission status, 39 participants from the Hangzhou Dataset and 34 from the Jinan Dataset were selected for further analysis. Three methods were used to extract brain similarity features, followed by a statistical test for feature selection. Six machine learning classifiers were employed to predict treatment response, and their generalizability was tested using the Jinan Dataset. Group analyses between remission and non-remission groups were conducted to identify brain regions associated with treatment response. Brain similarity features outperformed traditional metrics in predicting treatment outcomes, with the highest accuracy achieved by the model using these features. Between-group analyses revealed that the remission group had lower gray matter volume and density in the right precentral gyrus, but higher white matter volume (WMV). In the Jinan Dataset, significant differences were observed in the right cerebellum and fusiform gyrus, with higher WMV and density in the remission group. This study demonstrates that brain similarity features combined with machine learning can predict treatment response in MDD with moderate success across age groups. These findings emphasize the importance of considering age-related differences in treatment planning to personalize care. Clinical trial number: not applicable.

Auto-segmentation of cerebral cavernous malformations using a convolutional neural network.

Chou CJ, Yang HC, Lee CC, Jiang ZH, Chen CJ, Wu HM, Lin CF, Lai IC, Peng SJ

pubmed logopapersMay 26 2025
This paper presents a deep learning model for the automated segmentation of cerebral cavernous malformations (CCMs). The model was trained using treatment planning data from 199 Gamma Knife (GK) exams, comprising 171 cases with a single CCM and 28 cases with multiple CCMs. The training data included initial MRI images with target CCM regions manually annotated by neurosurgeons. For the extraction of data related to the brain parenchyma, we employed a mask region-based convolutional neural network (Mask R-CNN). Subsequently, this data was processed using a 3D convolutional neural network known as DeepMedic. The efficacy of the brain parenchyma extraction model was demonstrated via five-fold cross-validation, resulting in an average Dice similarity coefficient of 0.956 ± 0.002. The segmentation models used for CCMs achieved average Dice similarity coefficients of 0.741 ± 0.028 based solely on T2W images. The Dice similarity coefficients for the segmentation of CCMs types were as follows: Zabramski Classification type I (0.743), type II (0.742), and type III (0.740). We also developed a user-friendly graphical user interface to facilitate the use of these models in clinical analysis. This paper presents a deep learning model for the automated segmentation of CCMs, demonstrating sufficient performance across various Zabramski classifications. not applicable.

Detecting microcephaly and macrocephaly from ultrasound images using artificial intelligence.

Mengistu AK, Assaye BT, Flatie AB, Mossie Z

pubmed logopapersMay 26 2025
Microcephaly and macrocephaly, which are abnormal congenital markers, are associated with developmental and neurologic deficits. Hence, there is a medically imperative need to conduct ultrasound imaging early on. However, resource-limited countries such as Ethiopia are confronted with inadequacies such that access to trained personnel and diagnostic machines inhibits the exact and continuous diagnosis from being met. This study aims to develop a fetal head abnormality detection model from ultrasound images via deep learning. Data were collected from three Ethiopian healthcare facilities to increase model generalizability. The recruitment period for this study started on November 9, 2024, and ended on November 30, 2024. Several preprocessing techniques have been performed, such as augmentation, noise reduction, and normalization. SegNet, UNet, FCN, MobileNetV2, and EfficientNet-B0 were applied to segment and measure fetal head structures using ultrasound images. The measurements were classified as microcephaly, macrocephaly, or normal using WHO guidelines for gestational age, and then the model performance was compared with that of existing industry experts. The metrics used for evaluation included accuracy, precision, recall, the F1 score, and the Dice coefficient. This study was able to demonstrate the feasibility of using SegNet for automatic segmentation, measurement of abnormalities of the fetal head, and classification of macrocephaly and microcephaly, with an accuracy of 98% and a Dice coefficient of 0.97. Compared with industry experts, the model achieved accuracies of 92.5% and 91.2% for the BPD and HC measurements, respectively. Deep learning models can enhance prenatal diagnosis workflows, especially in resource-constrained settings. Future work needs to be done on optimizing model performance, trying complex models, and expanding datasets to improve generalizability. If these technologies are adopted, they can be used in prenatal care delivery. Not applicable.
Page 222 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.