RECIST<sup>Surv</sup>: Hybrid Multi-task Transformer for Hepatocellular Carcinoma Response and Survival Evaluation.
Authors
Abstract
Transarterial Chemoembolization (TACE) is a widely applied alternative treatment for patients with hepatocellular carcinoma who are not eligible for liver resection or transplantation. However, the clinical outcomes after TACE are highly heterogeneous. There remains an urgent need for effective and efficient strategies to accurately assess tumor response and predict long-term outcomes using longitudinal and multi-center datasets. To address this challenge, we here introduce RECIST<sup>Surv</sup>, a novel response-driven Transformer model that integrates multi-task learning with a response-driven co-attention mechanism to simultaneously perform liver and tumor segmentation, predict tumor response to TACE, and estimate overall survival based on longitudinal Computed Tomography (CT) imaging. The proposed Response-driven Co-attention layer models the interactions between pre-TACE and post-TACE features guided by the treatment response embedding. This design enables the model to capture complex relationships between imaging features, treatment response, and survival outcomes, thereby enhancing both prediction accuracy and interpretability. In a multi-center validation study, RECIST<sup>Surv</sup>-predicted prognosis has demonstrated superior precision than state-of-the-art methods with C-indexes ranging from 0.595 to 0.780. Furthermore, when integrated with multi-modal data, RECIST<sup>Surv</sup> has emerged as an independent prognostic factor in all three validation cohorts, with hazard ratio (HR) ranging from 1.693 to 20.7 (P = 0.001-0.042). Our results highlight the potential of RECIST<sup>Surv</sup> as a powerful tool for personalized treatment planning and outcome prediction in hepatocellular carcinoma patients undergoing TACE. The experimental code is made publicly available at https://github.com/rushier/RECISTSurv.