Sort by:
Page 8 of 1091 results

Driving Knowledge to Action: Building a Better Future With Artificial Intelligence-Enabled Multidisciplinary Oncology.

Loaiza-Bonilla A, Thaker N, Chung C, Parikh RB, Stapleton S, Borkowski P

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming multidisciplinary oncology at an unprecedented pace, redefining how clinicians detect, classify, and treat cancer. From earlier and more accurate diagnoses to personalized treatment planning, AI's impact is evident across radiology, pathology, radiation oncology, and medical oncology. By leveraging vast and diverse data-including imaging, genomic, clinical, and real-world evidence-AI algorithms can uncover complex patterns, accelerate drug discovery, and help identify optimal treatment regimens for each patient. However, realizing the full potential of AI also necessitates addressing concerns regarding data quality, algorithmic bias, explainability, privacy, and regulatory oversight-especially in low- and middle-income countries (LMICs), where disparities in cancer care are particularly pronounced. This study provides a comprehensive overview of how AI is reshaping cancer care, reviews its benefits and challenges, and outlines ethical and policy implications in line with ASCO's 2025 theme, <i>Driving Knowledge to Action.</i> We offer concrete calls to action for clinicians, researchers, industry stakeholders, and policymakers to ensure that AI-driven, patient-centric oncology is accessible, equitable, and sustainable worldwide.

[Applications of artificial intelligence in cardiovascular imaging: advantages, limitations, and future challenges].

Fortuni F, Petrina SM, Nicolosi GL

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is rapidly transforming cardiovascular imaging, offering innovative solutions to enhance diagnostic precision, prognostic accuracy, and therapeutic decision-making. This review explores the role of AI in cardiovascular imaging, highlighting its applications, advantages, limitations, and future challenges. The discussion is structured by imaging modalities, including echocardiography, cardiac and coronary computed tomography, cardiac magnetic resonance, and nuclear cardiology. For each modality, we examine AI's contributions across the patient care continuum: from patient selection and image acquisition to quantitative and qualitative analysis, interpretation support, prognostic stratification, therapeutic guidance, and integration with other clinical data. AI applications demonstrate significant potential to streamline workflows, improve diagnostic accuracy, and provide advanced insights for complex clinical scenarios. However, several limitations must be addressed. Many AI algorithms are developed using data from single, high-expertise centers, raising concerns about their generalizability to routine clinical practice. In some cases, these algorithms may even produce misleading results. Additionally, the "black box" nature of certain AI systems poses challenges for cardiologists, making discrepancies difficult to interpret or rectify. Importantly, AI should be seen as a complementary tool rather than a replacement for cardiologists, designed to expedite routine tasks and allow clinicians to focus on complex cases. Future challenges include fostering clinician involvement in algorithm development and extending AI implementation to peripheral healthcare centers. This approach aims to enhance accessibility, understanding, and applicability of AI in everyday clinical practice, ultimately democratizing its benefits and ensuring equitable integration into healthcare systems.

Privacy-Preserving Chest X-ray Report Generation via Multimodal Federated Learning with ViT and GPT-2

Md. Zahid Hossain, Mustofa Ahmed, Most. Sharmin Sultana Samu, Md. Rakibul Islam

arxiv logopreprintMay 27 2025
The automated generation of radiology reports from chest X-ray images holds significant promise in enhancing diagnostic workflows while preserving patient privacy. Traditional centralized approaches often require sensitive data transfer, posing privacy concerns. To address this, the study proposes a Multimodal Federated Learning framework for chest X-ray report generation using the IU-Xray dataset. The system utilizes a Vision Transformer (ViT) as the encoder and GPT-2 as the report generator, enabling decentralized training without sharing raw data. Three Federated Learning (FL) aggregation strategies: FedAvg, Krum Aggregation and a novel Loss-aware Federated Averaging (L-FedAvg) were evaluated. Among these, Krum Aggregation demonstrated superior performance across lexical and semantic evaluation metrics such as ROUGE, BLEU, BERTScore and RaTEScore. The results show that FL can match or surpass centralized models in generating clinically relevant and semantically rich radiology reports. This lightweight and privacy-preserving framework paves the way for collaborative medical AI development without compromising data confidentiality.

China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer.

Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W

pubmed logopapersMay 27 2025
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.

AI in Action: A Roadmap from the Radiology AI Council for Effective Model Evaluation and Deployment.

Trivedi H, Khosravi B, Gichoya J, Benson L, Dyckman D, Galt J, Howard B, Kikano E, Kunjummen J, Lall N, Li X, Patel S, Safdar N, Salastekar N, Segovis C, van Assen M, Harri P

pubmed logopapersMay 23 2025
As the integration of artificial intelligence (AI) into radiology workflows continues to evolve, establishing standardized processes for the evaluation and deployment of AI models is crucial to ensure success. This paper outlines the creation of a Radiology AI Council at a large academic center and subsequent development of framework in the form of a rubric to formalize the evaluation of radiology AI models and onboard them into clinical workflows. The rubric aims to address the challenges faced during the deployment of AI models, such as real-world model performance, workflow implementation, resource allocation, return on investment (ROI), and impact to the broader health system. Using this comprehensive rubric, the council aims to ensure that the process for selecting AI models is both standardized and transparent. This paper outlines the steps taken to establish this rubric, its components, and initial results from evaluation of 13 models over an 8-month period. We emphasize the importance of holistic model evaluation beyond performance metrics, and transparency and objectivity in AI model evaluation with the goal of improving the efficacy and safety of AI models in radiology.

ESR Essentials: a step-by-step guide of segmentation for radiologists-practice recommendations by the European Society of Medical Imaging Informatics.

Chupetlovska K, Akinci D'Antonoli T, Bodalal Z, Abdelatty MA, Erenstein H, Santinha J, Huisman M, Visser JJ, Trebeschi S, Groot Lipman KBW

pubmed logopapersMay 22 2025
High-quality segmentation is important for AI-driven radiological research and clinical practice, with the potential to play an even more prominent role in the future. As medical imaging advances, accurately segmenting anatomical and pathological structures is increasingly used to obtain quantitative data and valuable insights. Segmentation and volumetric analysis could enable more precise diagnosis, treatment planning, and patient monitoring. These guidelines aim to improve segmentation accuracy and consistency, allowing for better decision-making in both research and clinical environments. Practical advice on planning and organization is provided, focusing on quality, precision, and communication among clinical teams. Additionally, tips and strategies for improving segmentation practices in radiology and radiation oncology are discussed, as are potential pitfalls to avoid. KEY POINTS: As AI continues to advance, volumetry will become more integrated into clinical practice, making it essential for radiologists to stay informed about its applications in diagnosis and treatment planning. There is a significant lack of practical guidelines and resources tailored specifically for radiologists on technical topics like segmentation and volumetric analysis. Establishing clear rules and best practices for segmentation can streamline volumetric assessment in clinical settings, making it easier to manage and leading to more accurate decision-making for patient care.

Systematic review on the impact of deep learning-driven worklist triage on radiology workflow and clinical outcomes.

Momin E, Cook T, Gershon G, Barr J, De Cecco CN, van Assen M

pubmed logopapersMay 21 2025
To perform a systematic review on the impact of deep learning (DL)-based triage for reducing diagnostic delays and improving patient outcomes in peer-reviewed and pre-print publications. A search was conducted of primary research studies focused on DL-based worklist optimization for diagnostic imaging triage published on multiple databases from January 2018 until July 2024. Extracted data included study design, dataset characteristics, workflow metrics including report turnaround time and time-to-treatment, and patient outcome differences. Further analysis between clinical settings and integration modality was investigated using nonparametric statistics. Risk of bias was assessed with the risk of bias in non-randomized studies-of interventions (ROBINS-I) checklist. A total of 38 studies from 20 publications, involving 138,423 images, were analyzed. Workflow interventions concerned pulmonary embolism (n = 8), stroke (n = 3), intracranial hemorrhage (n = 12), and chest conditions (n = 15). Patients in the post DL-triage group had shorter median report turnaround times: a mean difference of 12.3 min (IQR: -25.7, -7.6) for pulmonary embolism, 20.5 min (IQR: -32.1, -9.3) for stroke, 4.3 min (IQR: -8.6, 1.3) for intracranial hemorrhage and 29.7 min (IQR: -2947.7, -18.3) for chest diseases. Sub-group analysis revealed that reductions varied per clinical environment and relative prevalence rates but were the highest when algorithms actively stratified and reordered the radiological worklist, with reductions of -43.7% in report turnaround time compared to -7.6% from widget-based systems (p < 0.01). DL-based triage systems had comparable report turnaround time improvements, especially in outpatient and high-prevalence settings, suggesting that AI-based triage holds promise in alleviating radiology workloads. Question Can DL-based triage address lengthening imaging report turnaround times and improve patient outcomes across distinct clinical environments? Findings DL-based triage improved report turnaround time across disease groups, with higher reductions reported in high-prevalence or lower acuity settings. Clinical relevance DL-based workflow prioritization is a reliable tool for reducing diagnostic imaging delay for time-sensitive disease across clinical settings. However, further research and reliable metrics are needed to provide specific recommendations with regards to false-negative examinations and multi-condition prioritization.

Exchange of Quantitative Computed Tomography Assessed Body Composition Data Using Fast Healthcare Interoperability Resources as a Necessary Step Toward Interoperable Integration of Opportunistic Screening Into Clinical Practice: Methodological Development Study.

Wen Y, Choo VY, Eil JH, Thun S, Pinto Dos Santos D, Kast J, Sigle S, Prokosch HU, Ovelgönne DL, Borys K, Kohnke J, Arzideh K, Winnekens P, Baldini G, Schmidt CS, Haubold J, Nensa F, Pelka O, Hosch R

pubmed logopapersMay 21 2025
Fast Healthcare Interoperability Resources (FHIR) is a widely used standard for storing and exchanging health care data. At the same time, image-based artificial intelligence (AI) models for quantifying relevant body structures and organs from routine computed tomography (CT)/magnetic resonance imaging scans have emerged. The missing link, simultaneously a needed step in advancing personalized medicine, is the incorporation of measurements delivered by AI models into an interoperable and standardized format. Incorporating image-based measurements and biomarkers into FHIR profiles can standardize data exchange, enabling timely, personalized treatment decisions and improving the precision and efficiency of patient care. This study aims to present the synergistic incorporation of CT-derived body organ and composition measurements with FHIR, delineating an initial paradigm for storing image-based biomarkers. This study integrated the results of the Body and Organ Analysis (BOA) model into FHIR profiles to enhance the interoperability of image-based biomarkers in radiology. The BOA model was selected as an exemplary AI model due to its ability to provide detailed body composition and organ measurements from CT scans. The FHIR profiles were developed based on 2 primary observation types: Body Composition Analysis (BCA Observation) for quantitative body composition metrics and Body Structure Observation for organ measurements. These profiles were structured to interoperate with a specially designed Diagnostic Report profile, which references the associated Imaging Study, ensuring a standardized linkage between image data and derived biomarkers. To ensure interoperability, all labels were mapped to SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) or RadLex terminologies using specific value sets. The profiles were developed using FHIR Shorthand (FSH) and SUSHI, enabling efficient definition and implementation guide generation, ensuring consistency and maintainability. In this study, 4 BOA profiles, namely, Body Composition Analysis Observation, Body Structure Volume Observation, Diagnostic Report, and Imaging Study, have been presented. These FHIR profiles, which cover 104 anatomical landmarks, 8 body regions, and 8 tissues, enable the interoperable usage of the results of AI segmentation models, providing a direct link between image studies, series, and measurements. The BOA profiles provide a foundational framework for integrating AI-derived imaging biomarkers into FHIR, bridging the gap between advanced imaging analytics and standardized health care data exchange. By enabling structured, interoperable representation of body composition and organ measurements, these profiles facilitate seamless integration into clinical and research workflows, supporting improved data accessibility and interoperability. Their adaptability allows for extension to other imaging modalities and AI models, fostering a more standardized and scalable approach to using imaging biomarkers in precision medicine. This work represents a step toward enhancing the integration of AI-driven insights into digital health ecosystems, ultimately contributing to more data-driven, personalized, and efficient patient care.

Neuroimaging Characterization of Acute Traumatic Brain Injury with Focus on Frontline Clinicians: Recommendations from the 2024 National Institute of Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Imaging Working Group.

Mac Donald CL, Yuh EL, Vande Vyvere T, Edlow BL, Li LM, Mayer AR, Mukherjee P, Newcombe VFJ, Wilde EA, Koerte IK, Yurgelun-Todd D, Wu YC, Duhaime AC, Awwad HO, Dams-O'Connor K, Doperalski A, Maas AIR, McCrea MA, Umoh N, Manley GT

pubmed logopapersMay 20 2025
Neuroimaging screening and surveillance is one of the first frontline diagnostic tools leveraged in the acute assessment (first 24 h postinjury) of patients suspected to have traumatic brain injury (TBI). While imaging, in particular computed tomography, is used almost universally in emergency departments worldwide to evaluate possible features of TBI, there is no currently agreed-upon reporting system, standard terminology, or framework to contextualize brain imaging findings with other available medical, psychosocial, and environmental data. In 2023, the NIH-National Institute of Neurological Disorders and Stroke convened six working groups of international experts in TBI to develop a new framework for nomenclature and classification. The goal of this effort was to propose a more granular system of injury classification that incorporates recent progress in imaging biomarkers, blood-based biomarkers, and injury and recovery modifiers to replace the commonly used Glasgow Coma Scale-based diagnosis groups of mild, moderate, and severe TBI, which have shown relatively poor diagnostic, prognostic, and therapeutic utility. Motivated by prior efforts to standardize the nomenclature for pathoanatomic imaging findings of TBI for research and clinical trials, along with more recent studies supporting the refinement of the originally proposed definitions, the Imaging Working Group sought to update and expand this application specifically for consideration of use in clinical practice. Here we report the recommendations of this working group to enable the translation of structured imaging common data elements to the standard of care. These leverage recent advances in imaging technology, electronic medical record (EMR) systems, and artificial intelligence (AI), along with input from key stakeholders, including patients with lived experience, caretakers, providers across medical disciplines, radiology industry partners, and policymakers. It was recommended that (1) there would be updates to the definitions of key imaging features used for this system of classification and that these should be further refined as new evidence of the underlying pathology driving the signal change is identified; (2) there would be an efficient, integrated tool embedded in the EMR imaging reporting system developed in collaboration with industry partners; (3) this would include AI-generated evidence-based feature clusters with diagnostic, prognostic, and therapeutic implications; and (4) a "patient translator" would be developed in parallel to assist patients and families in understanding these imaging features. In addition, important disclaimers would be provided regarding known limitations of current technology until such time as they are overcome, such as resolution and sequence parameter considerations. The end goal is a multifaceted TBI characterization model incorporating clinical, imaging, blood biomarker, and psychosocial and environmental modifiers to better serve patients not only acutely but also through the postinjury continuum in the days, months, and years that follow TBI.

Federated learning in low-resource settings: A chest imaging study in Africa -- Challenges and lessons learned

Jorge Fabila, Lidia Garrucho, Víctor M. Campello, Carlos Martín-Isla, Karim Lekadir

arxiv logopreprintMay 20 2025
This study explores the use of Federated Learning (FL) for tuberculosis (TB) diagnosis using chest X-rays in low-resource settings across Africa. FL allows hospitals to collaboratively train AI models without sharing raw patient data, addressing privacy concerns and data scarcity that hinder traditional centralized models. The research involved hospitals and research centers in eight African countries. Most sites used local datasets, while Ghana and The Gambia used public ones. The study compared locally trained models with a federated model built across all institutions to evaluate FL's real-world feasibility. Despite its promise, implementing FL in sub-Saharan Africa faces challenges such as poor infrastructure, unreliable internet, limited digital literacy, and weak AI regulations. Some institutions were also reluctant to share model updates due to data control concerns. In conclusion, FL shows strong potential for enabling AI-driven healthcare in underserved regions, but broader adoption will require improvements in infrastructure, education, and regulatory support.
Page 8 of 1091 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.