Sort by:
Page 1 of 546 results
Next

The performance of artificial intelligence in image-based prediction of hematoma enlargement: a systematic review and meta-analysis.

Fan W, Wu Z, Zhao W, Jia L, Li S, Wei W, Chen X

pubmed logopapersDec 1 2025
Accurately predicting hematoma enlargement (HE) is crucial for improving the prognosis of patients with cerebral haemorrhage. Artificial intelligence (AI) is a potentially reliable assistant for medical image recognition. This study systematically reviews medical imaging articles on the predictive performance of AI in HE. Retrieved relevant studies published before October, 2024 from Embase, Institute of Electrical and Electronics Engineers (IEEE), PubMed, Web of Science, and Cochrane Library databases. The diagnostic test of predicting hematoma enlargement based on CT image training artificial intelligence model, and reported 2 × 2 contingency tables or provided sensitivity (SE) and specificity (SP) for calculation. Two reviewers independently screened the retrieved citations and extracted data. The methodological quality of studies was assessed using the QUADAS-AI, and Preferred Reporting Items for Systematic reviews and Meta-Analyses was used to ensure standardised reporting of studies. Subgroup analysis was performed based on sample size, risk of bias, year of publication, ratio of training set to test set, and number of centres involved. 36 articles were included in this Systematic review to qualitative analysis, of which 23 have sufficient information for further quantitative analysis. Among these articles, there are a total of 7 articles used deep learning (DL) and 16 articles used machine learning (ML). The comprehensive SE and SP of ML are 78% (95% CI: 69-85%) and 85% (78-90%), respectively, while the AUC is 0.89 (0.86-0.91). The SE and SP of DL was 87% (95% CI: 80-92%) and 75% (67-81%), respectively, with an AUC of 0.88 (0.85-0.91). The subgroup analysis found that when the ratio of the training set to the test set is 7:3, the sensitivity is 0.77(0.62-0.91), <i>p</i> = 0.03; In terms of specificity, the group with sample size more than 200 has higher specificity, which is 0.83 (0.75-0.92), <i>p</i> = 0.02; among the risk groups in the study design, the specificity of the risk group was higher, which was 0.83 (0.76-0.89), <i>p</i> = 0.02. The group specificity of articles published before 2021 was higher, 0.84 (0.77-0.90); and the specificity of data from a single research centre was higher, which was 0.85 (0.80-0.91), <i>p</i> < 0.001. Artificial intelligence algorithms based on imaging have shown good performance in predicting HE.

A Meta-Analysis of the Diagnosis of Condylar and Mandibular Fractures Based on 3-dimensional Imaging and Artificial Intelligence.

Wang F, Jia X, Meiling Z, Oscandar F, Ghani HA, Omar M, Li S, Sha L, Zhen J, Yuan Y, Zhao B, Abdullah JY

pubmed logopapersJul 8 2025
This article aims to review the literature, study the current situation of using 3D images and artificial intelligence-assisted methods to improve the rapid and accurate classification and diagnosis of condylar fractures and conduct a meta-analysis of mandibular fractures. Mandibular condyle fracture is a common fracture type in maxillofacial surgery. Accurate classification and diagnosis of condylar fractures are critical to developing an effective treatment plan. With the rapid development of 3-dimensional imaging technology and artificial intelligence (AI), traditional x-ray diagnosis is gradually replaced by more accurate technologies such as 3-dimensional computed tomography (CT). These emerging technologies provide more detailed anatomic information and significantly improve the accuracy and efficiency of condylar fracture diagnosis, especially in the evaluation and surgical planning of complex fractures. The application of artificial intelligence in medical imaging is further analyzed, especially the successful cases of fracture detection and classification through deep learning models. Although AI technology has demonstrated great potential in condylar fracture diagnosis, it still faces challenges such as data quality, model interpretability, and clinical validation. This article evaluates the accuracy and practicality of AI in diagnosing mandibular fractures through a systematic review and meta-analysis of the existing literature. The results show that AI-assisted diagnosis has high prediction accuracy in detecting condylar fractures and significantly improves diagnostic efficiency. However, more multicenter studies are still needed to verify the application of AI in different clinical settings to promote its widespread application in maxillofacial surgery.

Diagnostic performance of artificial intelligence based on contrast-enhanced computed tomography in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis.

Yan G, Chen X, Wang Y

pubmed logopapersJul 2 2025
This meta-analysis systematically evaluated the diagnostic performance of artificial intelligence (AI) based on contrast-enhanced computed tomography (CECT) in detecting pancreatic ductal adenocarcinoma (PDAC). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy (PRISMA-DTA) guidelines, a comprehensive literature search was conducted across PubMed, Embase, and Web of Science from inception to March 2025. Bivariate random-effects models pooled sensitivity, specificity, and area under the curve (AUC). Heterogeneity was quantified via I² statistics, with subgroup analyses examining sources of variability, including AI methodologies, model architectures, sample sizes, geographic distributions, control groups and tumor stages. Nineteen studies involving 5,986 patients in internal validation cohorts and 2,069 patients in external validation cohorts were included. AI models demonstrated robust diagnostic accuracy in internal validation, with pooled sensitivity of 0.94 (95% CI 0.89-0.96), specificity of 0.93 (95% CI 0.90-0.96), and AUC of 0.98 (95% CI 0.96-0.99). External validation revealed moderately reduced sensitivity (0.84; 95% CI 0.78-0.89) and AUC (0.94; 95% CI 0.92-0.96), while specificity remained comparable (0.93; 95% CI 0.87-0.96). Substantial heterogeneity (I² > 85%) was observed, predominantly attributed to methodological variations in AI architectures and disparities in cohort sizes. AI demonstrates excellent diagnostic performance for PDAC on CECT, achieving high sensitivity and specificity across validation scenarios. However, its efficacy varies significantly with clinical context and tumor stage. Therefore, prospective multicenter trials that utilize standardized protocols and diverse cohorts, including early-stage tumors and complex benign conditions, are essential to validate the clinical utility of AI.

Artificial intelligence-assisted endobronchial ultrasound for differentiating between benign and malignant thoracic lymph nodes: a meta-analysis.

Tang F, Zha XK, Ye W, Wang YM, Wu YF, Wang LN, Lyu LP, Lyu XM

pubmed logopapersJul 2 2025
Endobronchial ultrasound (EBUS) is a widely used imaging modality for evaluating thoracic lymph nodes (LNs), particularly in the staging of lung cancer. Artificial intelligence (AI)-assisted EBUS has emerged as a promising tool to enhance diagnostic accuracy. However, its effectiveness in differentiating benign from malignant thoracic LNs remains uncertain. This meta-analysis aimed to evaluate the diagnostic performance of AI-assisted EBUS compared to the pathological reference standards. A systematic search was conducted across PubMed, Embase, and Web of Science for studies assessing AI-assisted EBUS in differentiating benign and malignant thoracic LNs. The reference standard included pathological confirmation via EBUS-guided transbronchial needle aspiration, surgical resection, or other histological/cytological validation methods. Sensitivity, specificity, diagnostic likelihood ratios, and diagnostic odds ratio (OR) were pooled using a random-effects model. The area under the receiver operating characteristic curve (AUROC) was summarized to evaluate diagnostic accuracy. Subgroup analyses were conducted by study design, lymph node location, and AI model type. Twelve studies with a total of 6,090 thoracic LNs were included. AI-assisted EBUS showed a pooled sensitivity of 0.75 (95% confidence interval [CI]: 0.60-0.86, I² = 97%) and specificity of 0.88 (95% CI: 0.83-0.92, I² = 96%). The positive and negative likelihood ratios were 6.34 (95% CI: 4.41-9.08) and 0.28 (95% CI: 0.17-0.47), respectively. The pooled diagnostic OR was 22.38 (95% CI: 11.03-45.38), and the AUROC was 0.90 (95% CI: 0.88-0.93). The subgroup analysis showed higher sensitivity but lower specificity in retrospective studies compared to prospective ones (sensitivity: 0.87 vs. 0.42; specificity: 0.80 vs. 0.93; both p < 0.001). No significant differences were found by lymph node location or AI model type. AI-assisted EBUS shows promise in differentiating benign from malignant thoracic LNs, particularly those with high specificity. However, substantial heterogeneity and moderate sensitivity highlight the need for cautious interpretation and further validation. PROSPERO CRD42025637964.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

Performance of artificial intelligence in evaluating maxillary sinus mucosal alterations in imaging examinations: systematic review.

Moreira GC, do Carmo Ribeiro CS, Verner FS, Lemos CAA

pubmed logopapersJul 1 2025
This systematic review aimed to assess the performance of artificial intelligence (AI) in the evaluation of maxillary sinus mucosal alterations in imaging examinations compared to human analysis. Studies that presented radiographic images for the diagnosis of paranasal sinus diseases, as well as control groups for AI, were included. Articles that performed tests on animals, presented other conditions, surgical methods, did not present data on the diagnosis of MS or on the outcomes of interest (area under the curve, sensitivity, specificity, and accuracy), compared the outcome only among different AIs were excluded. Searches were conducted in 5 electronic databases and a gray literature. The risk of bias (RB) was assessed using the QUADAS-2 and the certainty of evidence by GRADE. Six studies were included. The type of study considered was retrospective observational; with serious RB, and a considerable heterogeneity in methodologies. The IA presents similar results to humans, however, imprecision was assessed as serious for the outcomes and the certainty of evidence was classified as very low according to the GRADE approach. Furthermore, a dose-response effect was determined, as specialists demonstrate greater mastery of the diagnosis of MS when compared to resident professionals or general clinicians. Considering the outcomes, the AI represents a complementary tool for assessing maxillary mucosal alterations, especially considering professionals with less experience. Finally, performance analysis and definition of comparison parameters should be encouraged considering future research perspectives. AI is a potential complementary tool for assessing maxillary sinus mucosal alterations, however studies are still lacking methodological standardization.

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

Accuracy of machine learning models for pre-diagnosis and diagnosis of pancreatic ductal adenocarcinoma in contrast-CT images: a systematic review and meta-analysis.

Lopes Costa GL, Tasca Petroski G, Machado LG, Eulalio Santos B, de Oliveira Ramos F, Feuerschuette Neto LM, De Luca Canto G

pubmed logopapersJul 1 2025
To evaluate the diagnostic ability and methodological quality of ML models in detecting Pancreatic Ductal Adenocarcinoma (PDAC) in Contrast CT images. Included studies assessed adults diagnosed with PDAC, confirmed by histopathology. Metrics of tests were interpreted by ML algorithms. Studies provided data on sensitivity and specificity. Studies that did not meet the inclusion criteria, segmentation-focused studies, multiple classifiers or non-diagnostic studies were excluded. PubMed, Cochrane Central Register of Controlled Trials, and Embase were searched without restrictions. Risk of bias was assessed using QUADAS-2, methodological quality was evaluated using Radiomics Quality Score (RQS) and a Checklist for AI in Medical Imaging (CLAIM). Bivariate random-effects models were used for meta-analysis of sensitivity and specificity, I<sup>2</sup> values and subgroup analysis used to assess heterogeneity. Nine studies were included and 12,788 participants were evaluated, of which 3,997 were included in the meta-analysis. AI models based on CT scans showed an accuracy of 88.7% (IC 95%, 87.7%-89.7%), sensitivity of 87.9% (95% CI, 82.9%-91.6%), and specificity of 92.2% (95% CI, 86.8%-95.5%). The average score of six radiomics studies was 17.83 RQS points. Nine ML methods had an average CLAIM score of 30.55 points. Our study is the first to quantitatively interpret various independent research, offering insights for clinical application. Despite favorable sensitivity and specificity results, the studies were of low quality, limiting definitive conclusions. Further research is necessary to validate these models before widespread adoption.

Artificial Intelligence in CT Angiography for the Detection of Coronary Artery Stenosis and Calcified Plaque: A Systematic Review and Meta-analysis.

Du M, He S, Liu J, Yuan L

pubmed logopapersJul 1 2025
We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists. A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I<sup>2</sup> statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system. Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99)." AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings. The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.

Diagnostic Performance of Radiomics for Differentiating Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

Wang D, Sun L

pubmed logopapersJun 25 2025
Differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) is essential for selecting the most effective treatment strategies. However, traditional imaging modalities and serum biomarkers often lack sufficient specificity. Radiomics, a sophisticated image analysis approach that derives quantitative data from medical imaging, has emerged as a promising non-invasive tool. To systematically review and meta-analyze the radiomics diagnostic accuracy in differentiating ICC from HCC. PubMed, EMBASE, and Web of Science databases were systematically searched through January 24, 2025. Studies evaluating radiomics models for distinguishing ICC from HCC were included. Assessing the quality of included studies was done by using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and METhodological RadiomICs Score tools. Pooled sensitivity, specificity, and area under the curve (AUC) were calculated using a bivariate random-effects model. Subgroup and publication bias analyses were also performed. 12 studies with 2541 patients were included, with 14 validation cohorts entered into meta-analysis. The pooled sensitivity and specificity of radiomics models were 0.82 (95% CI: 0.76-0.86) and 0.90 (95% CI: 0.85-0.93), respectively, with an AUC of 0.88 (95% CI: 0.85-0.91). Subgroup analyses revealed variations based on segmentation method, software used, and sample size, though not all differences were statistically significant. Publication bias was not detected. Radiomics demonstrates high diagnostic accuracy in distinguishing ICC from HCC and offers a non-invasive adjunct to conventional diagnostics. Further prospective, multicenter studies with standardized workflows are needed to enhance clinical applicability and reproducibility.
Page 1 of 546 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.