Sort by:
Page 61 of 71706 results

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.

Deep Learning with Domain Randomization in Image and Feature Spaces for Abdominal Multiorgan Segmentation on CT and MRI Scans.

Shi Y, Wang L, Qureshi TA, Deng Z, Xie Y, Li D

pubmed logopapersMay 21 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning segmentation model that can segment abdominal organs on CT and MR images with high accuracy and generalization ability. Materials and Methods In this study, an extended nnU-Net model was trained for abdominal organ segmentation. A domain randomization method in both the image and feature space was developed to improve the generalization ability under cross-site and cross-modality settings on public prostate MRI and abdominal CT and MRI datasets. The prostate MRI dataset contains data from multiple health care institutions with domain shifts. The abdominal CT and MRI dataset is structured for cross-modality evaluation, training on one modality (eg, MRI) and testing on the other (eg, CT). This domain randomization method was then used to train a segmentation model with enhanced generalization ability on the abdominal multiorgan segmentation challenge (AMOS) dataset to improve abdominal CT and MR multiorgan segmentation, and the model was compared with two commonly used segmentation algorithms (TotalSegmentator and MRSegmentator). Model performance was evaluated using the Dice similarity coefficient (DSC). Results The proposed domain randomization method showed improved generalization ability on the cross-site and cross-modality datasets compared with the state-of-the-art methods. The segmentation model using this method outperformed two other publicly available segmentation models on data from unseen test domains (Average DSC: 0.88 versus 0.79; <i>P</i> < .001 and 0.88 versus 0.76; <i>P</i> < .001). Conclusion The combination of image and feature domain randomizations improved the accuracy and generalization ability of deep learning-based abdominal segmentation on CT and MR images. © RSNA, 2025.

TAGS: 3D Tumor-Adaptive Guidance for SAM

Sirui Li, Linkai Peng, Zheyuan Zhang, Gorkem Durak, Ulas Bagci

arxiv logopreprintMay 21 2025
Foundation models (FMs) such as CLIP and SAM have recently shown great promise in image segmentation tasks, yet their adaptation to 3D medical imaging-particularly for pathology detection and segmentation-remains underexplored. A critical challenge arises from the domain gap between natural images and medical volumes: existing FMs, pre-trained on 2D data, struggle to capture 3D anatomical context, limiting their utility in clinical applications like tumor segmentation. To address this, we propose an adaptation framework called TAGS: Tumor Adaptive Guidance for SAM, which unlocks 2D FMs for 3D medical tasks through multi-prompt fusion. By preserving most of the pre-trained weights, our approach enhances SAM's spatial feature extraction using CLIP's semantic insights and anatomy-specific prompts. Extensive experiments on three open-source tumor segmentation datasets prove that our model surpasses the state-of-the-art medical image segmentation models (+46.88% over nnUNet), interactive segmentation frameworks, and other established medical FMs, including SAM-Med2D, SAM-Med3D, SegVol, Universal, 3D-Adapter, and SAM-B (at least +13% over them). This highlights the robustness and adaptability of our proposed framework across diverse medical segmentation tasks.

Systematic review on the impact of deep learning-driven worklist triage on radiology workflow and clinical outcomes.

Momin E, Cook T, Gershon G, Barr J, De Cecco CN, van Assen M

pubmed logopapersMay 21 2025
To perform a systematic review on the impact of deep learning (DL)-based triage for reducing diagnostic delays and improving patient outcomes in peer-reviewed and pre-print publications. A search was conducted of primary research studies focused on DL-based worklist optimization for diagnostic imaging triage published on multiple databases from January 2018 until July 2024. Extracted data included study design, dataset characteristics, workflow metrics including report turnaround time and time-to-treatment, and patient outcome differences. Further analysis between clinical settings and integration modality was investigated using nonparametric statistics. Risk of bias was assessed with the risk of bias in non-randomized studies-of interventions (ROBINS-I) checklist. A total of 38 studies from 20 publications, involving 138,423 images, were analyzed. Workflow interventions concerned pulmonary embolism (n = 8), stroke (n = 3), intracranial hemorrhage (n = 12), and chest conditions (n = 15). Patients in the post DL-triage group had shorter median report turnaround times: a mean difference of 12.3 min (IQR: -25.7, -7.6) for pulmonary embolism, 20.5 min (IQR: -32.1, -9.3) for stroke, 4.3 min (IQR: -8.6, 1.3) for intracranial hemorrhage and 29.7 min (IQR: -2947.7, -18.3) for chest diseases. Sub-group analysis revealed that reductions varied per clinical environment and relative prevalence rates but were the highest when algorithms actively stratified and reordered the radiological worklist, with reductions of -43.7% in report turnaround time compared to -7.6% from widget-based systems (p < 0.01). DL-based triage systems had comparable report turnaround time improvements, especially in outpatient and high-prevalence settings, suggesting that AI-based triage holds promise in alleviating radiology workloads. Question Can DL-based triage address lengthening imaging report turnaround times and improve patient outcomes across distinct clinical environments? Findings DL-based triage improved report turnaround time across disease groups, with higher reductions reported in high-prevalence or lower acuity settings. Clinical relevance DL-based workflow prioritization is a reliable tool for reducing diagnostic imaging delay for time-sensitive disease across clinical settings. However, further research and reliable metrics are needed to provide specific recommendations with regards to false-negative examinations and multi-condition prioritization.

SAMA-UNet: Enhancing Medical Image Segmentation with Self-Adaptive Mamba-Like Attention and Causal-Resonance Learning

Saqib Qamar, Mohd Fazil, Parvez Ahmad, Ghulam Muhammad

arxiv logopreprintMay 21 2025
Medical image segmentation plays an important role in various clinical applications, but existing models often struggle with the computational inefficiencies and challenges posed by complex medical data. State Space Sequence Models (SSMs) have demonstrated promise in modeling long-range dependencies with linear computational complexity, yet their application in medical image segmentation remains hindered by incompatibilities with image tokens and autoregressive assumptions. Moreover, it is difficult to achieve a balance in capturing both local fine-grained information and global semantic dependencies. To address these challenges, we introduce SAMA-UNet, a novel architecture for medical image segmentation. A key innovation is the Self-Adaptive Mamba-like Aggregated Attention (SAMA) block, which integrates contextual self-attention with dynamic weight modulation to prioritise the most relevant features based on local and global contexts. This approach reduces computational complexity and improves the representation of complex image features across multiple scales. We also suggest the Causal-Resonance Multi-Scale Module (CR-MSM), which enhances the flow of information between the encoder and decoder by using causal resonance learning. This mechanism allows the model to automatically adjust feature resolution and causal dependencies across scales, leading to better semantic alignment between the low-level and high-level features in U-shaped architectures. Experiments on MRI, CT, and endoscopy images show that SAMA-UNet performs better in segmentation accuracy than current methods using CNN, Transformer, and Mamba. The implementation is publicly available at GitHub.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

MedBLIP: Fine-tuning BLIP for Medical Image Captioning

Manshi Limbu, Diwita Banerjee

arxiv logopreprintMay 20 2025
Medical image captioning is a challenging task that requires generating clinically accurate and semantically meaningful descriptions of radiology images. While recent vision-language models (VLMs) such as BLIP, BLIP2, Gemini and ViT-GPT2 show strong performance on natural image datasets, they often produce generic or imprecise captions when applied to specialized medical domains. In this project, we explore the effectiveness of fine-tuning the BLIP model on the ROCO dataset for improved radiology captioning. We compare the fine-tuned BLIP against its zero-shot version, BLIP-2 base, BLIP-2 Instruct and a ViT-GPT2 transformer baseline. Our results demonstrate that domain-specific fine-tuning on BLIP significantly improves performance across both quantitative and qualitative evaluation metrics. We also visualize decoder cross-attention maps to assess interpretability and conduct an ablation study to evaluate the contributions of encoder-only and decoder-only fine-tuning. Our findings highlight the importance of targeted adaptation for medical applications and suggest that decoder-only fine-tuning (encoder-frozen) offers a strong performance baseline with 5% lower training time than full fine-tuning, while full model fine-tuning still yields the best results overall.

Artificial Intelligence and Musculoskeletal Surgical Applications.

Oettl FC, Zsidai B, Oeding JF, Samuelsson K

pubmed logopapersMay 20 2025
Artificial intelligence (AI) has emerged as a transformative force in orthopedic surgery. Potentially encompassing pre-, intra-, and postoperative processes, it can process complex medical imaging, provide real-time surgical guidance, and analyze large datasets for outcome prediction and optimization. AI has shown improvements in surgical precision, efficiency, and patient outcomes across orthopedic subspecialties, and large language models and agentic AI systems are expanding AI utility beyond surgical applications into areas such as clinical documentation, patient education, and autonomous decision support. The successful implementation of AI in orthopedic surgery requires careful attention to validation, regulatory compliance, and healthcare system integration. As these technologies continue to advance, maintaining the balance between innovation and patient safety remains crucial, with the ultimate goal of achieving more personalized, efficient, and equitable healthcare delivery while preserving the essential role of human clinical judgment. This review examines the current landscape and future trajectory of AI applications in orthopedic surgery, highlighting both technological advances and their clinical impact. Studies have suggested that AI-assisted procedures achieve higher accuracy and better functional outcomes compared to conventional methods, while reducing operative times and complications. However, these technologies are designed to augment rather than replace clinical expertise, serving as sophisticated tools to enhance surgeons' capabilities and improve patient care.

Intelligent health model for medical imaging to guide laymen using neural cellular automata.

Sharma SK, Chowdhary CL, Sharma VS, Rasool A, Khan AA

pubmed logopapersMay 20 2025
A layman in health systems is a person who doesn't have any knowledge about health data i.e., X-ray, MRI, CT scan, and health examination reports, etc. The motivation behind the proposed invention is to help laymen to make medical images understandable. The health model is trained using a neural network approach that analyses user health examination data; predicts the type and level of the disease and advises precaution to the user. Cellular Automata (CA) technology has been integrated with the neural networks to segment the medical image. The CA analyzes the medical images pixel by pixel and generates a robust threshold value which helps to efficiently segment the image and identify accurate abnormal spots from the medical image. The proposed method has been trained and experimented using 10000+ medical images which are taken from various open datasets. Various text analysis measures i.e., BLEU, ROUGE, and WER are used in the research to validate the produced report. The BLEU and ROUGE calculate a similarity to decide how the generated text report is closer to the original report. The BLEU and ROUGE scores of the experimented images are approximately 0.62 and 0.90, claims that the produced report is very close to the original report. The WER score 0.14, claims that the generated report contains the most relevant words. The overall summary of the proposed research is that it provides a fruitful medical report with accurate disease and precautions to the laymen.
Page 61 of 71706 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.