Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

Authors

Kim D,Choo K,Lee S,Kang S,Yun M,Yang J

Affiliations (5)

  • Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea.
  • Department of Computer Science, Yonsei University, Seoul, Republic of Korea.
  • Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
  • Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, University of Texas Southwestern, Dallas, TX, USA.

Abstract

Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to synthetic MR images (MR<sub>SYN</sub>) and performing automated quantitative regional analysis using MR<sub>SYN</sub>-derived segmentation. In this retrospective study, 139 subjects who underwent brain [<sup>18</sup>F]FBB PET/CT and T1-weighted MRI were included. A U-Net-like model was trained to translate CT images to MR<sub>SYN</sub>; subsequently, a separate model was trained to segment MR<sub>SYN</sub> into 95 regions. Regional and composite standardised uptake value ratio (SUVr) was calculated in [<sup>18</sup>F]FBB PET images using the acquired ROIs. For evaluation of MR<sub>SYN</sub>, quantitative measurements including structural similarity index measure (SSIM) were employed, while for MR<sub>SYN</sub>-based segmentation evaluation, Dice similarity coefficient (DSC) was calculated. Wilcoxon signed-rank test was performed for SUVrs computed using MR<sub>SYN</sub> and ground-truth MR (MR<sub>GT</sub>). Compared to MR<sub>GT</sub>, the mean SSIM of MR<sub>SYN</sub> was 0.974 ± 0.005. The MR<sub>SYN</sub>-based segmentation achieved a mean DSC of 0.733 across 95 regions. No statistical significance (P > 0.05) was found for SUVr between the ROIs from MR<sub>SYN</sub> and those from MR<sub>GT</sub>, excluding the precuneus. We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MR<sub>SYN</sub>. Our proposed framework can benefit patients who have difficulties in performing an MRI scan.

Topics

Deep LearningPositron Emission Tomography Computed TomographyMagnetic Resonance ImagingBrainImage Processing, Computer-AssistedJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.