Fully automatic anatomical landmark localization and trajectory planning for navigated external ventricular drain placement.
Authors
Affiliations (2)
Affiliations (2)
- 1Image Sciences Institute, University Medical Centre Utrecht; and.
- 2Department of Neurosurgery, University Medical Centre Utrecht, The Netherlands.
Abstract
The aim of this study was to develop and validate a fully automatic anatomical landmark localization and trajectory planning method for external ventricular drain (EVD) placement using CT or MRI. The authors used 125 preoperative CT and 137 contrast-enhanced T1-weighted MRI scans to generate 3D surface meshes of patients' skin and ventricular systems. Seven anatomical landmarks were manually annotated to train a neural network for automatic landmark localization. The model's accuracy was assessed by calculating the mean Euclidian distance of predicted landmarks to the ground truth. Kocher's point and EVD trajectories were automatically calculated with the foramen of Monro as the target. Performance was evaluated using Kakarla grades, as assessed by 3 clinicians. Interobserver agreement was measured with Pearson correlation, and scores were aggregated using majority voting. Ordinal linear regressions were used to assess whether modality or placement side had an effect on Kakarla grades. The impact of landmark localization error on the final EVD plan was also evaluated. The automated landmark localization model achieved a mean error of 4.0 mm (SD 2.6 mm). Trajectory planning generated a trajectory for all patients, with a Kakarla grade of 1 in 92.9% of cases. Statistical analyses indicated a strong interobserver agreement and no significant differences between modalities (CT vs MRI) or EVD placement sides. The location of Kocher's point and the target point were significantly correlated to nasion landmark localization error, with median drifts of 9.38 mm (95% CI 1.94-19.16 mm) and 3.91 mm (95% CI 0.18-26.76 mm) for Kocher's point and the target point, respectively. The presented method was efficient and robust for landmark localization and accurate EVD trajectory planning. The short processing time thereby also provides a base for use in emergency settings.