Sort by:
Page 5 of 27269 results

CT-based AI framework leveraging multi-scale features for predicting pathological grade and Ki67 index in clear cell renal cell carcinoma: a multicenter study.

Yang H, Zhang Y, Li F, Liu W, Zeng H, Yuan H, Ye Z, Huang Z, Yuan Y, Xiang Y, Wu K, Liu H

pubmed logopapersMay 14 2025
To explore whether a CT-based AI framework, leveraging multi-scale features, can offer a non-invasive approach to accurately predict pathological grade and Ki67 index in clear cell renal cell carcinoma (ccRCC). In this multicenter retrospective study, a total of 1073 pathologically confirmed ccRCC patients from seven cohorts were split into internal cohorts (training and validation sets) and an external test set. The AI framework comprised an image processor, a 3D-kidney and tumor segmentation model by 3D-UNet, a multi-scale features extractor built upon unsupervised learning, and a multi-task classifier utilizing XGBoost. A quantitative model interpretation technique, known as SHapley Additive exPlanations (SHAP), was employed to explore the contribution of multi-scale features. The 3D-UNet model showed excellent performance in segmenting both the kidney and tumor regions, with Dice coefficients exceeding 0.92. The proposed multi-scale features model exhibited strong predictive capability for pathological grading and Ki67 index, with AUROC values of 0.84 and 0.87, respectively, in the internal validation set, and 0.82 and 0.82, respectively, in the external test set. The SHAP results demonstrated that features from radiomics, the 3D Auto-Encoder, and dimensionality reduction all made significant contributions to both prediction tasks. The proposed AI framework, leveraging multi-scale features, accurately predicts the pathological grade and Ki67 index of ccRCC. The CT-based AI framework leveraging multi-scale features offers a promising avenue for accurately predicting the pathological grade and Ki67 index of ccRCC preoperatively, indicating a direction for non-invasive assessment. Non-invasively determining pathological grade and Ki67 index in ccRCC could guide treatment decisions. The AI framework integrates segmentation, classification, and model interpretation, enabling fully automated analysis. The AI framework enables non-invasive preoperative detection of high-risk tumors, assisting clinical decision-making.

Whole-body CT-to-PET synthesis using a customized transformer-enhanced GAN.

Xu B, Nie Z, He J, Li A, Wu T

pubmed logopapersMay 14 2025
Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET-CT) is a multi-modality medical imaging technique widely used for screening and diagnosis of lesions and tumors, in which, CT can provide detailed anatomical structures, while PET can show metabolic activities. Nevertheless, it has disadvantages such as long scanning time, high cost, and relatively high radiation doses.

Purpose: We propose a deep learning model for the whole-body CT-to-PET synthesis task, generating high-quality synthetic PET images that are comparable to real ones in both clinical relevance and diagnostic value.

Material: We collect 102 pairs of 3D CT and PET scans, which are sliced into 27,240 pairs of 2D CT and PET images ( training: 21,855 pairs, validation: 2,810, testing: 2,575 pairs).

Methods: We propose a Transformer-enhanced Generative Adversarial Network (GAN) for whole-body CT-to-PET synthesis task. The CPGAN model uses residual blocks and Fully Connected Transformer Residual (FCTR) blocks to capture both local features and global contextual information. A customized loss function incorporating structural consistency is designed to improve the quality of synthesized PET images.

Results: Both quantitative and qualitative evaluation results demonstrate effectiveness of the CPGAN model. The mean and standard variance of NRMSE,PSNR and SSIM values on test set are (16.90 ± 12.27) × 10-4, 28.71 ± 2.67 and 0.926 ± 0.033, respectively, outperforming other seven state-of-the-art models. Three radiologists independently and blindly evaluated and gave subjective scores to 100 randomly chosen PET images (50 real and 50 synthetic). By Wilcoxon signed rank test, there are no statistical differences between the synthetic PET images and the real ones.

Conclusions: Despite the inherent limitations of CT images to directly reflect biological information of metabolic tissues, CPGAN model effectively synthesizes satisfying PET images from CT scans, which has potential in reducing the reliance on actual PET-CT scans.

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Almalki H, Khadidos AO, Alhebaishi N, Senan EM

pubmed logopapersMay 14 2025
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the brain cells, indicating the stage of disease progression. Artificial intelligence techniques analyze MRI with high accuracy and extract subtle features that are difficult to diagnose manually. In this study, a modern methodology was designed that combines the power of CNN models (ResNet101 and GoogLeNet) to extract local deep features and the power of Vision Transformer (ViT) models to extract global features and find relationships between image spots. First, the MRI images of the Open Access Imaging Studies Series (OASIS) dataset were improved by two filters: the adaptive median filter (AMF) and Laplacian filter. The ResNet101 and GoogLeNet models were modified to suit the feature extraction task and reduce computational cost. The ViT architecture was modified to reduce the computational cost while increasing the number of attention vertices to further discover global features and relationships between image patches. The enhanced images were fed into the proposed ViT-CNN methodology. The enhanced images were fed to the modified ResNet101 and GoogLeNet models to extract the deep feature maps with high accuracy. Deep feature maps were fed into the modified ViT model. The deep feature maps were partitioned into 32 feature maps using ResNet101 and 16 feature maps using GoogLeNet, both with a size of 64 features. The feature maps were encoded to recognize the spatial arrangement of the patch and preserve the relationship between patches, helping the self-attention layers distinguish between patches based on their positions. They were fed to the transformer encoder, which consisted of six blocks and multiple vertices to focus on different patterns or regions simultaneously. Finally, the MLP classification layers classify each image into one of four dataset classes. The improved ResNet101-ViT hybrid methodology outperformed the GoogLeNet-ViT hybrid methodology. ResNet101-ViT achieved 98.7% accuracy, 95.05% AUC, 96.45% precision, 99.68% sensitivity, and 97.78% specificity.

An Annotated Multi-Site and Multi-Contrast Magnetic Resonance Imaging Dataset for the study of the Human Tongue Musculature.

Ribeiro FL, Zhu X, Ye X, Tu S, Ngo ST, Henderson RD, Steyn FJ, Kiernan MC, Barth M, Bollmann S, Shaw TB

pubmed logopapersMay 14 2025
This dataset provides the first annotated, openly available MRI-based imaging dataset for investigations of tongue musculature, including multi-contrast and multi-site MRI data from non-disease participants. The present dataset includes 47 participants collated from three studies: BeLong (four participants; T2-weighted images), EATT4MND (19 participants; T2-weighted images), and BMC (24 participants; T1-weighted images). We provide manually corrected segmentations of five key tongue muscles: the superior longitudinal, combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other phenotypic measures, including age, sex, weight, height, and tongue muscle volume, are also available for use. This dataset will benefit researchers across domains interested in the structure and function of the tongue in health and disease. For instance, researchers can use this data to train new machine learning models for tongue segmentation, which can be leveraged for segmentation and tracking of different tongue muscles engaged in speech formation in health and disease. Altogether, this dataset provides the means to the scientific community for investigation of the intricate tongue musculature and its role in physiological processes and speech production.

Recognizing artery segments on carotid ultrasonography using embedding concatenation of deep image and vision-language models.

Lo CM, Sung SF

pubmed logopapersMay 14 2025
Evaluating large artery atherosclerosis is critical for predicting and preventing ischemic strokes. Ultrasonographic assessment of the carotid arteries is the preferred first-line examination due to its ease of use, noninvasive, and absence of radiation exposure. This study proposed an automated classification model for the common carotid artery (CCA), carotid bulb, internal carotid artery (ICA), and external carotid artery (ECA) to enhance the quantification of carotid artery examinations.&#xD;Approach: A total of 2,943 B-mode ultrasound images (CCA: 1,563; bulb: 611; ICA: 476; ECA: 293) from 288 patients were collected. Three distinct sets of embedding features were extracted from artificial intelligence networks including pre-trained DenseNet201, vision Transformer (ViT), and echo contrastive language-image pre-training (EchoCLIP) models using deep learning architectures for pattern recognition. These features were then combined in a support vector machine (SVM) classifier to interpret the anatomical structures in B-mode images.&#xD;Main results: After ten-fold cross-validation, the model achieved an accuracy of 82.3%, which was significantly better than using individual feature sets, with a p-value of <0.001.&#xD;Significance: The proposed model could make carotid artery examinations more accurate and consistent with the achieved classification accuracy. The source code is available at https://github.com/buddykeywordw/Artery-Segments-Recognition&#xD.

Explainability Through Human-Centric Design for XAI in Lung Cancer Detection

Amy Rafferty, Rishi Ramaesh, Ajitha Rajan

arxiv logopreprintMay 14 2025
Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.

The utility of low-dose pre-operative CT of ovarian tumor with artificial intelligence iterative reconstruction for diagnosing peritoneal invasion, lymph node and hepatic metastasis.

Cai X, Han J, Zhou W, Yang F, Liu J, Wang Q, Li R

pubmed logopapersMay 13 2025
Diagnosis of peritoneal invasion, lymph node metastasis, and hepatic metastasis is crucial in the decision-making process of ovarian tumor treatment. This study aimed to test the feasibility of low-dose abdominopelvic CT with an artificial intelligence iterative reconstruction (AIIR) for diagnosing peritoneal invasion, lymph node metastasis, and hepatic metastasis in pre-operative imaging of ovarian tumor. This study prospectively enrolled 88 patients with pathology-confirmed ovarian tumors, where routine-dose CT at portal venous phase (120 kVp/ref. 200 mAs) with hybrid iterative reconstruction (HIR) was followed by a low-dose scan (120 kVp/ref. 40 mAs) with AIIR. The performance of diagnosing peritoneal invasion and lymph node metastasis was assessed using receiver operating characteristic (ROC) analysis with pathological results serving as the reference. The hepatic parenchymal metastases were diagnosed and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured. The perihepatic structures were also scored on the clarity of porta hepatis, gallbladder fossa and intersegmental fissure. The effective dose of low-dose CT was 79.8% lower than that of routine-dose scan (2.64 ± 0.46 vs. 13.04 ± 2.25 mSv, p < 0.001). The low-dose AIIR showed similar area under the ROC curve (AUC) with routine-dose HIR for diagnosing both peritoneal invasion (0.961 vs. 0.960, p = 0.734) and lymph node metastasis (0.711 vs. 0.715, p = 0.355). The 10 hepatic parenchymal metastases were all accurately diagnosed on the two image sets. The low-dose AIIR exhibited higher SNR and CNR for hepatic parenchymal metastases and superior clarity for perihepatic structures. In low-dose pre-operative CT of ovarian tumor, AIIR delivers similar diagnostic accuracy for peritoneal invasion, lymph node metastasis, and hepatic metastasis, as compared to routine-dose abdominopelvic CT. It is feasible and diagnostically safe to apply up to 80% dose reduction in CT imaging of ovarian tumor by using AIIR.

Segmentation of renal vessels on non-enhanced CT images using deep learning models.

Zhong H, Zhao Y, Zhang Y

pubmed logopapersMay 13 2025
To evaluate the possibility of performing renal vessel reconstruction on non-enhanced CT images using deep learning models. 177 patients' CT scans in the non-enhanced phase, arterial phase and venous phase were chosen. These data were randomly divided into the training set (n = 120), validation set (n = 20) and test set (n = 37). In training set and validation set, a radiologist marked out the right renal arteries and veins on non-enhanced CT phase images using contrast phases as references. Trained deep learning models were tested and evaluated on the test set. A radiologist performed renal vessel reconstruction on the test set without the contrast phase reference, and the results were used for comparison. Reconstruction using the arterial phase and venous phase was used as the gold standard. Without the contrast phase reference, both radiologist and model could accurately identify artery and vein main trunk. The accuracy was 91.9% vs. 97.3% (model vs. radiologist) in artery and 91.9% vs. 100% in vein, the difference was insignificant. The model had difficulty identify accessory arteries, the accuracy was significantly lower than radiologist (44.4% vs. 77.8%, p = 0.044). The model also had lower accuracy in accessory veins, but the difference was insignificant (64.3% vs. 85.7%, p = 0.094). Deep learning models could accurately recognize the right renal artery and vein main trunk, and accuracy was comparable to that of radiologists. Although the current model still had difficulty recognizing small accessory vessels, further training and model optimization would solve these problems.

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

Hultenmo M, Pernbro J, Ahlin J, Bonnier M, Båth M

pubmed logopapersMay 13 2025
Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population. The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography. Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC<sub>VGC</sub>) values and associated confidence intervals (CI). Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results. The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

Development of a deep learning method for phase retrieval image enhancement in phase contrast microcomputed tomography.

Ding XF, Duan X, Li N, Khoz Z, Wu FX, Chen X, Zhu N

pubmed logopapersMay 13 2025
Propagation-based imaging (one method of X-ray phase contrast imaging) with microcomputed tomography (PBI-µCT) offers the potential to visualise low-density materials, such as soft tissues and hydrogel constructs, which are difficult to be identified by conventional absorption-based contrast µCT. Conventional µCT reconstruction produces edge-enhanced contrast (EEC) images which preserve sharp boundaries but are susceptible to noise and do not provide consistent grey value representation for the same material. Meanwhile, phase retrieval (PR) algorithms can convert edge enhanced contrast to area contrast to improve signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) but usually results to over-smoothing, thus creating inaccuracies in quantitative analysis. To alleviate these problems, this study developed a deep learning-based method called edge view enhanced phase retrieval (EVEPR), by strategically integrating the complementary spatial features of denoised EEC and PR images, and further applied this method to segment the hydrogel constructs in vivo and ex vivo. EVEPR used paired denoised EEC and PR images to train a deep convolutional neural network (CNN) on a dataset-to-dataset basis. The CNN had been trained on important high-frequency details, for example, edges and boundaries from the EEC image and area contrast from PR images. The CNN predicted result showed enhanced area contrast beyond conventional PR algorithms while improving SNR and CNR. The enhanced CNR especially allowed for the image to be segmented with greater efficiency. EVEPR was applied to in vitro and ex vivo PBI-µCT images of low-density hydrogel constructs. The enhanced visibility and consistency of hydrogel constructs was essential for segmenting such material which usually exhibit extremely poor contrast. The EVEPR images allowed for more accurate segmentation with reduced manual adjustments. The efficiency in segmentation allowed for the generation of a sizeable database of segmented hydrogel scaffolds which were used in conventional data-driven segmentation applications. EVEPR was demonstrated to be a robust post-image processing method capable of significantly enhancing image quality by training a CNN on paired denoised EEC and PR images. This method not only addressed the common issues of over-smoothing and noise susceptibility in conventional PBI-µCT image processing but also allowed for efficient and accurate in vitro and ex vivo image processing applications of low-density materials.
Page 5 of 27269 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.