Sort by:
Page 45 of 48473 results

Real-world Evaluation of Computer-aided Pulmonary Nodule Detection Software Sensitivity and False Positive Rate.

El Alam R, Jhala K, Hammer MM

pubmed logopapersMay 12 2025
Evaluate the false positive rate (FPR) of nodule detection software in real-world use. A total of 250 nonenhanced chest computed tomography (CT) examinations were randomly selected from an academic institution and submitted to the ClearRead nodule detection system (Riverain Technologies). Detected findings were reviewed by a thoracic imaging fellow. Nodules were classified as true nodules, lymph nodes, or other findings (branching opacity, vessel, mucus plug, etc.), and FPR was recorded. FPR was compared with the initial published FPR in the literature. True diagnosis was based on pathology or follow-up stability. For cases with malignant nodules, we recorded whether malignancy was detected by clinical radiology report (which was performed without software assistance) and/or ClearRead. Twenty-one CTs were excluded due to a lack of thin-slice images, and 229 CTs were included. A total of 594 findings were reported by ClearRead, of which 362 (61%) were true nodules and 232 (39%) were other findings. Of the true nodules, 297 were solid nodules, of which 79 (27%) were intrapulmonary lymph nodes. The mean findings identified by ClearRead per scan was 2.59. ClearRead mean FPR was 1.36, greater than the published rate of 0.58 (P<0.0001). If we consider true lung nodules <6 mm as false positive, FPR is 2.19. A malignant nodule was present in 30 scans; ClearRead identified it in 26 (87%), and the clinical report identified it in 28 (93%) (P=0.32). In real-world use, ClearRead had a much higher FPR than initially reported but a similar sensitivity for malignant nodule detection compared with unassisted radiologists.

AI-based volumetric six-tissue body composition quantification from CT cardiac attenuation scans for mortality prediction: a multicentre study.

Yi J, Marcinkiewicz AM, Shanbhag A, Miller RJH, Geers J, Zhang W, Killekar A, Manral N, Lemley M, Buchwald M, Kwiecinski J, Zhou J, Kavanagh PB, Liang JX, Builoff V, Ruddy TD, Einstein AJ, Feher A, Miller EJ, Sinusas AJ, Berman DS, Dey D, Slomka PJ

pubmed logopapersMay 12 2025
CT attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only used for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and to evaluate these measures for all-cause mortality risk stratification. We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry at four sites (Yale University, University of Calgary, Columbia University, and University of Ottawa), to define the chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle, subcutaneous adipose tissue, intramuscular adipose tissue (IMAT), visceral adipose tissue (VAT), and epicardial adipose tissue (EAT) were quantified between automatically identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation and indexed volumes were evaluated for predicting all-cause mortality, adjusting for established risk factors and 18 other body composition measures via Cox regression models and Kaplan-Meier curves. The end-to-end processing time was less than 2 min per scan with no user interaction. Between 2009 and 2021, we included 11 305 participants from four sites participating in the REFINE SPECT registry, who underwent single-photon emission computed tomography cardiac scans. After excluding patients who had incomplete T5-T11 scan coverage, missing clinical data, or who had been used for EAT model training, the final study group comprised 9918 patients. 5451 (55%) of 9918 participants were male and 4467 (45%) of 9918 participants were female. Median follow-up time was 2·48 years (IQR 1·46-3·65), during which 610 (6%) patients died. High VAT, EAT, and IMAT attenuation were associated with an increased all-cause mortality risk (adjusted hazard ratio 2·39, 95% CI 1·92-2·96; p<0·0001, 1·55, 1·26-1·90; p<0·0001, and 1·30, 1·06-1·60; p=0·012, respectively). Patients with high bone attenuation were at reduced risk of death (0·77, 0·62-0·95; p=0·016). Likewise, high skeletal muscle volume index was associated with a reduced risk of death (0·56, 0·44-0·71; p<0·0001). CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers that can be automatically measured and offer important additional prognostic value. The National Heart, Lung, and Blood Institute, National Institutes of Health.

Promptable segmentation of CT lung lesions based on improved U-Net and Segment Anything model (SAM).

Yan W, Xu Y, Yan S

pubmed logopapersMay 11 2025
BackgroundComputed tomography (CT) is widely used in clinical diagnosis of lung diseases. The automatic segmentation of lesions in CT images aids in the development of intelligent lung disease diagnosis.ObjectiveThis study aims to address the issue of imprecise segmentation in CT images due to the blurred detailed features of lesions, which can easily be confused with surrounding tissues.MethodsWe proposed a promptable segmentation method based on an improved U-Net and Segment Anything model (SAM) to improve segmentation accuracy of lung lesions in CT images. The improved U-Net incorporates a multi-scale attention module based on a channel attention mechanism ECA (Efficient Channel Attention) to improve recognition of detailed feature information at edge of lesions; and a promptable clipping module to incorporate physicians' prior knowledge into the model to reduce background interference. Segment Anything model (SAM) has a strong ability to recognize lesions and pulmonary atelectasis or organs. We combine the two to improve overall segmentation performances.ResultsOn the LUAN16 dataset and a lung CT dataset provided by the Shanghai Chest Hospital, the proposed method achieves Dice coefficients of 80.12% and 92.06%, and Positive Predictive Values of 81.25% and 91.91%, which are superior to most existing mainstream segmentation methods.ConclusionThe proposed method can be used to improve segmentation accuracy of lung lesions in CT images, enhance automation level of existing computer-aided diagnostic systems, and provide more effective assistance to radiologists in clinical practice.

Creation of an Open-Access Lung Ultrasound Image Database For Deep Learning and Neural Network Applications

Kumar, A., Nandakishore, P., Gordon, A. J., Baum, E., Madhok, J., Duanmu, Y., Kugler, J.

medrxiv logopreprintMay 11 2025
BackgroundLung ultrasound (LUS) offers advantages over traditional imaging for diagnosing pulmonary conditions, with superior accuracy compared to chest X-ray and similar performance to CT at lower cost. Despite these benefits, widespread adoption is limited by operator dependency, moderate interrater reliability, and training requirements. Deep learning (DL) could potentially address these challenges, but development of effective algorithms is hindered by the scarcity of comprehensive image repositories with proper metadata. MethodsWe created an open-source dataset of LUS images derived a multi-center study involving N=226 adult patients presenting with respiratory symptoms to emergency departments between March 2020 and April 2022. Images were acquired using a standardized scanning protocol (12-zone or modified 8-zone) with various point-of-care ultrasound devices. Three blinded researchers independently analyzed each image following consensus guidelines, with disagreements adjudicated to provide definitive interpretations. Videos were pre-processed to remove identifiers, and frames were extracted and resized to 128x128 pixels. ResultsThe dataset contains 1,874 video clips comprising 303,977 frames. Half of the participants (50%) had COVID-19 pneumonia. Among all clips, 66% contained no abnormalities, 18% contained B-lines, 4.5% contained consolidations, 6.4% contained both B-lines and consolidations, and 5.2% had indeterminate findings. Pathological findings varied significantly by lung zone, with anterior zones more frequently normal and less likely to show consolidations compared to lateral and posterior zones. DiscussionThis dataset represents one of the largest annotated LUS repositories to date, including both COVID-19 and non-COVID-19 patients. The comprehensive metadata and expert interpretations enhance its utility for DL applications. Despite limitations including potential device-specific characteristics and COVID-19 predominance, this repository provides a valuable resource for developing AI tools to improve LUS acquisition and interpretation.

A systematic review and meta-analysis of the utility of quantitative, imaging-based approaches to predict radiation-induced toxicity in lung cancer patients.

Tong D, Midroni J, Avison K, Alnassar S, Chen D, Parsa R, Yariv O, Liu Z, Ye XY, Hope A, Wong P, Raman S

pubmed logopapersMay 11 2025
To conduct a systematic review and meta-analysis of the performance of radiomics, dosiomics and machine learning in generating toxicity prediction in thoracic radiotherapy. An electronic database search was conducted and dual-screened by independent authors to identify eligible studies for systematic review and meta-analysis. Data was extracted and study quality was assessed using TRIPOD for machine learning studies, RQS for Radiomics and RoB for dosiomics. 10,703 studies were identified, and 5252 entered screening. 106 studies including 23,373 patients were eligible for systematic review. Primary toxicity predicted was radiation pneumonitis (81), followed by esophagitis (12) and lymphopenia (4). Fourty-two studies studying radiation pneumonitis were eligible for meta-analysis, with pooled area-under-curve (AUC) of 0.82 (95% CI 0.79-0.85). Studies with machine learning had the best performance, with classical and deep learning models having similar performance. There is a trend towards an improvement of the performance of models with the year of publication. There is variability in study quality among the three study categories and dosiomic studies scored the highest among these. Publication bias was not observed. The majority of existing literature using radiomics, dosiomics and machine learning has focused on radiation pneumonitis prediction. Future research should focus on toxicity prediction of other organs at risk and the adoption of these models into clinical practice.

Reproducing and Improving CheXNet: Deep Learning for Chest X-ray Disease Classification

Daniel Strick, Carlos Garcia, Anthony Huang

arxiv logopreprintMay 10 2025
Deep learning for radiologic image analysis is a rapidly growing field in biomedical research and is likely to become a standard practice in modern medicine. On the publicly available NIH ChestX-ray14 dataset, containing X-ray images that are classified by the presence or absence of 14 different diseases, we reproduced an algorithm known as CheXNet, as well as explored other algorithms that outperform CheXNet's baseline metrics. Model performance was primarily evaluated using the F1 score and AUC-ROC, both of which are critical metrics for imbalanced, multi-label classification tasks in medical imaging. The best model achieved an average AUC-ROC score of 0.85 and an average F1 score of 0.39 across all 14 disease classifications present in the dataset.

Magnetic Resonance Imaging in the Clinical Evaluation of Lung Disorders: Current Status and Future Prospects.

Wu L, Gao C, Wu T, Kong N, Zhang Z, Li J, Fan L, Xu M

pubmed logopapersMay 9 2025
The low proton density and high signal decay rate of pulmonary tissue have previously hampered the application of magnetic resonance imaging (MRI) in the clinical evaluation of lung disorders. With the continuing technical advances in scanners, coils, pulse sequences, and image postprocessing, pulmonary MRI can provide structural and functional information with faster imaging speed and improved image quality, which has shown potential to be an alternative and complementary diagnostic method to chest computed tomography (CT). Compared with CT, MRI does not involve ionizing radiation, making it particularly suitable for pediatric patients, pregnant women, and individuals requiring longitudinal monitoring. This narrative review focuses on recent advances in techniques and clinical applications for pulmonary MRI in lung diseases, including lung parenchymal and pulmonary vascular diseases. Future developments, including artificial intelligence-driven technological optimization and assisted diagnosis, hardware advancements, and clinical biomarkers validation, hold the potential to further enhance the clinical utility of pulmonary MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.

The present and future of lung cancer screening: latest evidence.

Gutiérrez Alliende J, Kazerooni EA, Crosbie PAJ, Xie X, Sharma A, Reis J

pubmed logopapersMay 9 2025
Lung cancer is the leading cause of cancer-related mortality worldwide. Early lung cancer detection improves lung cancer-related mortality and survival. This report summarizes presentations and panel discussions from a webinar, "The Present and Future of Lung Cancer Screening: Latest Evidence and AI Perspectives." The webinar provided the perspectives of experts from the United States, United Kingdom, and China on evidence-based recommendations and management in lung cancer screening (LCS), barriers, and the role of artificial intelligence (AI). With several countries now incorporating the utilization of AI in their screening programs, AI offers potential solutions to some of the challenges associated with LCS.

Application of a pulmonary nodule detection program using AI technology to ultra-low-dose CT: differences in detection ability among various image reconstruction methods.

Tsuchiya N, Kobayashi S, Nakachi R, Tomori Y, Yogi A, Iida G, Ito J, Nishie A

pubmed logopapersMay 9 2025
This study aimed to investigate the performance of an artificial intelligence (AI)-based lung nodule detection program in ultra-low-dose CT (ULDCT) imaging, with a focus on the influence of various image reconstruction methods on detection accuracy. A chest phantom embedded with artificial lung nodules (solid and ground-glass nodules [GGNs]; diameters: 12 mm, 8 mm, 5 mm, and 3 mm) was scanned using six combinations of tube currents (160 mA, 80 mA, and 10 mA) and voltages (120 kV and 80 kV) on a Canon Aquilion One CT scanner. Images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR). Nodule detection was performed using an AI-based lung nodule detection program, and performance metrics were analyzed across different reconstruction methods and radiation dose protocols. At the lowest dose protocol (80 kV, 10 mA), FBP showed a 0% detection rate for all nodule sizes. HIR and DLR consistently achieved 100% detection rates for solid nodules ≥ 5 mm and GGNs ≥ 8 mm. No method detected 3 mm GGNs under any protocol. DLR demonstrated the highest detection rates, even under ultra-low-dose settings, while maintaining high image quality. AI-based lung nodule detection in ULDCT is strongly dependent on the choice of image reconstruction method.

LMLCC-Net: A Semi-Supervised Deep Learning Model for Lung Nodule Malignancy Prediction from CT Scans using a Novel Hounsfield Unit-Based Intensity Filtering

Adhora Madhuri, Nusaiba Sobir, Tasnia Binte Mamun, Taufiq Hasan

arxiv logopreprintMay 9 2025
Lung cancer is the leading cause of patient mortality in the world. Early diagnosis of malignant pulmonary nodules in CT images can have a significant impact on reducing disease mortality and morbidity. In this work, we propose LMLCC-Net, a novel deep learning framework for classifying nodules from CT scan images using a 3D CNN, considering Hounsfield Unit (HU)-based intensity filtering. Benign and malignant nodules have significant differences in their intensity profile of HU, which was not exploited in the literature. Our method considers the intensity pattern as well as the texture for the prediction of malignancies. LMLCC-Net extracts features from multiple branches that each use a separate learnable HU-based intensity filtering stage. Various combinations of branches and learnable ranges of filters were explored to finally produce the best-performing model. In addition, we propose a semi-supervised learning scheme for labeling ambiguous cases and also developed a lightweight model to classify the nodules. The experimental evaluations are carried out on the LUNA16 dataset. Our proposed method achieves a classification accuracy (ACC) of 91.96%, a sensitivity (SEN) of 92.04%, and an area under the curve (AUC) of 91.87%, showing improved performance compared to existing methods. The proposed method can have a significant impact in helping radiologists in the classification of pulmonary nodules and improving patient care.
Page 45 of 48473 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.