Current and future applications of artificial intelligence in lung cancer and mesothelioma.

Authors

Roche JJ,Seyedshahi F,Rakovic K,Thu AW,Le Quesne J,Blyth KG

Affiliations (5)

  • School of Cancer Sciences, University of Glasgow, Glasgow, UK.
  • CRUK Scotland Institute, Glasgow, UK.
  • Pathology Department, Queen Elizabeth University Hospital, Glasgow, UK.
  • Glasgow Pleural Disease Unit, Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK.
  • School of Cancer Sciences, University of Glasgow, Glasgow, UK [email protected].

Abstract

Considerable challenges exist in managing lung cancer and mesothelioma, including diagnostic complexity, treatment stratification, early detection and imaging quantification. Variable incidence in mesothelioma also makes equitable provision of high-quality care difficult. In this context, artificial intelligence (AI) offers a range of assistive/automated functions that can potentially enhance clinical decision-making, while reducing inequality and pathway delay. In this state-of-the-art narrative review, we synthesise evidence on this topic, focusing particularly on tools that ingest routine pathology and radiology images. We summarise the strengths and weaknesses of AI applied to common multidisciplinary team (MDT) functions, including histological diagnosis, therapeutic response prediction, radiological detection and quantification, and survival estimation. We also review emerging methods capable of generating novel biological insights and current barriers to implementation, including access to high-quality training data and suitable regulatory and technical infrastructure. Neural networks trained on pathology images have proven utility in histological classification, prognostication, response prediction and survival. Self-supervised models can also generate new insights into biological features responsible for adverse outcomes. Radiology applications include lung nodule tools, which offer critical pathway support for imminent lung cancer screening and urgent referrals. Tumour segmentation AI offers particular advantages in mesothelioma, where response assessment and volumetric staging are difficult using human readers due to tumour size and morphological complexity. AI is also critical for radiogenomics, permitting effective integration of molecular and radiomic features for discovery of non-invasive markers for molecular subtyping and enhanced stratification. AI solutions offer considerable potential benefits across the MDT, particularly in repetitive or time-consuming tasks based on pathology and radiology images. Effective leveraging of this technology is critical for lung cancer screening and efficient delivery of increasingly complex diagnostic and predictive MDT functions. Future AI research should involve transparent and interpretable outputs that assist in explaining the basis of AI-supported decision making.

Topics

Journal ArticleReview

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.