Innovative technologies and their clinical prospects for early lung cancer screening.

Authors

Deng Z,Ma X,Zou S,Tan L,Miao T

Affiliations (4)

  • Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
  • Department of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China.
  • Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
  • Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. [email protected].

Abstract

Lung cancer remains the leading cause of cancer-related mortality worldwide, due to lacking effective early-stage screening approaches. Imaging, such as low-dose CT, poses radiation risk, and biopsies can induce some complications. Additionally, traditional serum tumor markers lack diagnostic specificity. This highlights the urgent need for precise and non-invasive early detection techniques. This systematic review aims to evaluate the limitations of conventional screening methods (imaging/biopsy/tumor markers), seek breakthroughs in liquid biopsy for early lung cancer detection, and assess the potential value of Artificial Intelligence (AI), thereby providing evidence-based insights for establishing an optimal screening framework. We systematically searched the PubMed database for the literature published up to May 2025. Key words include "Artificial Intelligence", "Early Lung cancer screening", "Imaging examination", "Innovative technologies", "Liquid biopsy", and "Puncture biopsy". Our inclusion criteria focused on studies about traditional and innovative screening methods, with an emphasis on original research concerning diagnostic performance or high-quality reviews. This approach helps identify critical studies in early lung cancer screening. Novel liquid biopsy techniques are non-invasive and have superior diagnostic efficacy. AI-assisted diagnostics further enhance accuracy. We propose three development directions: establishing risk-based liquid biopsy screening protocols, developing a stepwise "imaging-AI-liquid biopsy" diagnostic workflow, and creating standardized biomarker panel testing solutions. Integrating traditional methodologies, novel liquid biopsies, and AI to establish a comprehensive early lung cancer screening model is important. These innovative strategies aim to significantly increase early detection rates, substantially enhancing lung cancer control. This review provides both theoretical guidance for clinical practice and future research.

Topics

Lung NeoplasmsEarly Detection of CancerJournal ArticleSystematic ReviewReview

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.