PMFF-Net: A deep learning-based image classification model for UIP, NSIP, and OP.

Authors

Xu MW,Zhang ZH,Wang X,Li CT,Yang HY,Liao ZH,Zhang JQ

Affiliations (4)

  • Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
  • Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People's Republic of China.
  • School of Information, Yunnan University, Kunming, Yunnan, 650032, People's Republic of China.
  • Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China. Electronic address: [email protected].

Abstract

High-resolution computed tomography (HRCT) is helpful for diagnosing interstitial lung diseases (ILD), but it largely depends on the experience of physicians. Herein, our study aims to develop a deep-learning-based classification model to differentiate the three common types of ILD, so as to provide a reference to help physicians make the diagnosis and improve the accuracy of ILD diagnosis. Patients were selected from four tertiary Grade A hospitals in Kunming based on inclusion and exclusion criteria. HRCT scans of 130 patients were included. The imaging manifestations were usual interstitial pneumonia (UIP), non-specific interstitial pneumonia (NSIP), and organizing pneumonia (OP). Additionally, 50 chest HRCT cases without imaging abnormalities during the same period were selected.Construct a data set. Conduct the training, validation, and testing of the Parallel Multi-scale Feature Fusion Network (PMFF-Net) deep learning model. Utilize Python software to generate data and charts pertaining to model performance. Assess the model's accuracy, precision, recall, and F1-score, and juxtapose its diagnostic efficacy against that of physicians across various hospital levels, with differing levels of seniority, and from various departments. The PMFF -Net deep learning model is capable of classifying imaging types such as UIP, NSIP, and OP, as well as normal imaging. In a mere 105 s, it makes the diagnosis for 18 HRCT images with a diagnostic accuracy of 92.84 %, precision of 91.88 %, recall of 91.95 %, and an F1 score of 0.9171. The diagnostic accuracy of senior radiologists (83.33 %) and pulmonologists (77.77 %) from tertiary hospitals is higher than that of internists from secondary hospitals (33.33 %). Meanwhile, the diagnostic accuracy of middle-aged radiologists (61.11 %) and pulmonologists (66.66 %) are higher than junior radiologists (38.88 %) and pulmonologists (44.44 %) in tertiary hospitals, whereas junior and middle-aged internists at secondary hospitals were unable to complete the tests. This study found that the PMFF-Net model can effectively classify UIP, NSIP, OP imaging types, and normal imaging, which can help doctors of different hospital levels and departments make clinical decisions quickly and effectively.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.