Combination of 2D and 3D nnU-Net for ground glass opacity segmentation in CT images of Post-COVID-19 patients.

Authors

Nguyen QH,Hoang DA,Pham HV

Affiliations (2)

  • School of Information and Communications Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam.
  • School of Information and Communications Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam. Electronic address: [email protected].

Abstract

The COVID-19 pandemic plays a significant roles in the global health, highlighting the imperative for effective management of post-recovery symptoms. Within this context, Ground Glass Opacity (GGO) in lung computed tomography CT scans emerges as a critical indicator for early intervention. Recently, most researchers have investigated initially a challenge to refine techniques for GGO segmentation. These approaches aim to scrutinize and juxtapose cutting-edge methods for analyzing lung CT images of patients recuperating from COVID-19. While many methods in this challenge utilize the nnU-Net architecture, its general approach has not concerned completely GGO areas such as marking infected areas, ground-glass opacity, irregular shapes and fuzzy boundaries. This research has investigated a specialized machine learning algorithm, advancing the nn-UNet framework to accurately segment GGO in lung CT scans of post-COVID-19 patients. We propose a novel approach for two-stage image segmentation methods based on nnU-Net 2D and 3D models including lung and shadow image segmentation, incorporating the attention mechanism. The combination models enhance automatic segmentation and models' accuracy when using different error function in the training process. Experimental results show that the proposed model's outcomes DSC score ranks fifth among the compared results. The proposed method has also the second-highest sensitivity value among the methods, which shows that this method has a higher true segmentation rate than most of the other methods. The proposed method has achieved a Hausdorff95 of 54.566, Surface dice of 0.7193, Sensitivity of 0.7528, and Specificity of 0.7749. As compared with the state-of-the-art methods, the proposed model in experimental results is improved much better than the current methods in term of segmentation of infected areas. The proposed model has been deployed in the case study of real-world problems with the combination of 2D and 3D models. It is demonstrated the capacity to comprehensively detect lung lesions correctly. Additionally, the boundary loss function has assisted in achieving more precise segmentation for low-resolution images. Initially segmenting lung area has reduced the volume of images requiring processing, while diminishing for training process.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.