Sort by:
Page 42 of 2252246 results

LLM-driven Medical Report Generation via Communication-efficient Heterogeneous Federated Learning

Haoxuan Che, Haibo Jin, Zhengrui Guo, Yi Lin, Cheng Jin, Hao Chen

arxiv logopreprintJun 21 2025
LLMs have demonstrated significant potential in Medical Report Generation (MRG), yet their development requires large amounts of medical image-report pairs, which are commonly scattered across multiple centers. Centralizing these data is exceptionally challenging due to privacy regulations, thereby impeding model development and broader adoption of LLM-driven MRG models. To address this challenge, we present FedMRG, the first framework that leverages Federated Learning (FL) to enable privacy-preserving, multi-center development of LLM-driven MRG models, specifically designed to overcome the critical challenge of communication-efficient LLM training under multi-modal data heterogeneity. To start with, our framework tackles the fundamental challenge of communication overhead in FL-LLM tuning by employing low-rank factorization to efficiently decompose parameter updates, significantly reducing gradient transmission costs and making LLM-driven MRG feasible in bandwidth-constrained FL settings. Furthermore, we observed the dual heterogeneity in MRG under the FL scenario: varying image characteristics across medical centers, as well as diverse reporting styles and terminology preferences. To address this, we further enhance FedMRG with (1) client-aware contrastive learning in the MRG encoder, coupled with diagnosis-driven prompts, which capture both globally generalizable and locally distinctive features while maintaining diagnostic accuracy; and (2) a dual-adapter mutual boosting mechanism in the MRG decoder that harmonizes generic and specialized adapters to address variations in reporting styles and terminology. Through extensive evaluation of our established FL-MRG benchmark, we demonstrate the generalizability and adaptability of FedMRG, underscoring its potential in harnessing multi-center data and generating clinically accurate reports while maintaining communication efficiency.

OpenMAP-BrainAge: Generalizable and Interpretable Brain Age Predictor

Pengyu Kan, Craig Jones, Kenichi Oishi

arxiv logopreprintJun 21 2025
Purpose: To develop an age prediction model which is interpretable and robust to demographic and technological variances in brain MRI scans. Materials and Methods: We propose a transformer-based architecture that leverages self-supervised pre-training on large-scale datasets. Our model processes pseudo-3D T1-weighted MRI scans from three anatomical views and incorporates brain volumetric information. By introducing a stem architecture, we reduce the conventional quadratic complexity of transformer models to linear complexity, enabling scalability for high-dimensional MRI data. We trained our model on ADNI2 $\&$ 3 (N=1348) and OASIS3 (N=716) datasets (age range: 42 - 95) from the North America, with an 8:1:1 split for train, validation and test. Then, we validated it on the AIBL dataset (N=768, age range: 60 - 92) from Australia. Results: We achieved an MAE of 3.65 years on ADNI2 $\&$ 3 and OASIS3 test set and a high generalizability of MAE of 3.54 years on AIBL. There was a notable increase in brain age gap (BAG) across cognitive groups, with mean of 0.15 years (95% CI: [-0.22, 0.51]) in CN, 2.55 years ([2.40, 2.70]) in MCI, 6.12 years ([5.82, 6.43]) in AD. Additionally, significant negative correlation between BAG and cognitive scores was observed, with correlation coefficient of -0.185 (p < 0.001) for MoCA and -0.231 (p < 0.001) for MMSE. Gradient-based feature attribution highlighted ventricles and white matter structures as key regions influenced by brain aging. Conclusion: Our model effectively fused information from different views and volumetric information to achieve state-of-the-art brain age prediction accuracy, improved generalizability and interpretability with association to neurodegenerative disorders.

DRIMV_TSK: An Interpretable Surgical Evaluation Model for Incomplete Multi-View Rectal Cancer Data

Wei Zhang, Zi Wang, Hanwen Zhou, Zhaohong Deng, Weiping Ding, Yuxi Ge, Te Zhang, Yuanpeng Zhang, Kup-Sze Choi, Shitong Wang, Shudong Hu

arxiv logopreprintJun 21 2025
A reliable evaluation of surgical difficulty can improve the success of the treatment for rectal cancer and the current evaluation method is based on clinical data. However, more data about rectal cancer can be collected with the development of technology. Meanwhile, with the development of artificial intelligence, its application in rectal cancer treatment is becoming possible. In this paper, a multi-view rectal cancer dataset is first constructed to give a more comprehensive view of patients, including the high-resolution MRI image view, pressed-fat MRI image view, and clinical data view. Then, an interpretable incomplete multi-view surgical evaluation model is proposed, considering that it is hard to obtain extensive and complete patient data in real application scenarios. Specifically, a dual representation incomplete multi-view learning model is first proposed to extract the common information between views and specific information in each view. In this model, the missing view imputation is integrated into representation learning, and second-order similarity constraint is also introduced to improve the cooperative learning between these two parts. Then, based on the imputed multi-view data and the learned dual representation, a multi-view surgical evaluation model with the TSK fuzzy system is proposed. In the proposed model, a cooperative learning mechanism is constructed to explore the consistent information between views, and Shannon entropy is also introduced to adapt the view weight. On the MVRC dataset, we compared it with several advanced algorithms and DRIMV_TSK obtained the best results.

BoneDat, a database of standardized bone morphology for in silico analyses.

Henyš P, Kuchař M

pubmed logopapersJun 20 2025
In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.

Automatic Multi-Task Segmentation and Vulnerability Assessment of Carotid Plaque on Contrast-Enhanced Ultrasound Images and Videos via Deep Learning.

Hu B, Zhang H, Jia C, Chen K, Tang X, He D, Zhang L, Gu S, Chen J, Zhang J, Wu R, Chen SL

pubmed logopapersJun 20 2025
Intraplaque neovascularization (IPN) within carotid plaque is a crucial indicator of plaque vulnerability. Contrast-enhanced ultrasound (CEUS) is a valuable tool for assessing IPN by evaluating the location and quantity of microbubbles within the carotid plaque. However, this task is typically performed by experienced radiologists. Here we propose a deep learning-based multi-task model for the automatic segmentation and IPN grade classification of carotid plaque on CEUS images and videos. We also compare the performance of our model with that of radiologists. To simulate the clinical practice of radiologists, who often use CEUS videos with dynamic imaging to track microbubble flow and identify IPN, we develop a workflow for plaque vulnerability assessment using CEUS videos. Our multi-task model outperformed individually trained segmentation and classification models, achieving superior performance in IPN grade classification based on CEUS images. Specifically, our model achieved a high segmentation Dice coefficient of 84.64% and a high classification accuracy of 81.67%. Moreover, our model surpassed the performance of junior and medium-level radiologists, providing more accurate IPN grading of carotid plaque on CEUS images. For CEUS videos, our model achieved a classification accuracy of 80.00% in IPN grading. Overall, our multi-task model demonstrates great performance in the automatic, accurate, objective, and efficient IPN grading in both CEUS images and videos. This work holds significant promise for enhancing the clinical diagnosis of plaque vulnerability associated with IPN in CEUS evaluations.

The diagnostic accuracy of MRI radiomics in axillary lymph node metastasis prediction: a systematic review and meta-analysis.

Motiei M, Mansouri SS, Tamimi A, Farokhi S, Fakouri A, Rassam K, Sedighi-Pirsaraei N, Hassanzadeh-Rad A

pubmed logopapersJun 20 2025
Breast cancer is the most prevalent malignancy in women and a leading cause of mortality. Accurate assessment of axillary lymph node metastasis (LNM) is critical for breast cancer management. Exploring non-invasive methods such as radiomics for the detection of LNM is highly important. We systematically searched Pubmed, Embase, Scopus, Web of Science and google scholar until 11 March 2024. To assess the risk of bias and quality of studies, we utilized the quality assessment of diagnostic accuracy studies (QUADAS) tool as well as the radiomics quality score (RQS). Area under the curve (AUC), sensitivity, specificity and accuracy were determined for each study to evaluate the diagnostic accuracy of radiomics in magnetic resonance imaging (MRI) for detecting LNM in patients with breast cancer. This meta-analysis of 20 studies (5072 patients) demonstrated an overall AUC of 0.83 (95% confidence interval (CI): 0.80-0.86). Subgroup analysis revealed a trend towards higher specificity when radiomics was combined with clinical factors (0.83) compared to radiomics alone (0.79). Sensitivity analysis confirmed the robustness of the findings and publication bias was not evident. The radiomics models increased the likelihood of a positive LNM outcome from 37% to 73.2% when initial probability was positive and decreased the likelihood to 8% when initial probability was negative, highlighting their potential clinical utility. Radiomics as a non-invasive method demonstrates strong potential for detecting LNM in breast cancer, offering clinical promise. However, further standardization and validation are needed in future studies.

Impact of ablation on regional strain from 4D computed tomography in the left atrium.

Mehringer N, Severance L, Park A, Ho G, McVeigh E

pubmed logopapersJun 20 2025
Ablation for atrial fibrillation targets an arrhythmogenic substrate in the left atrium (LA) myocardium with therapeutic energy, resulting in a scar tissue. Although a global LA function typically improves after ablation, the injured tissue is stiffer and non-contractile. The local functional impact of ablation has not been thoroughly investigated. This study retrospectively analyzed the LA mechanics of 15 subjects who received a four-dimensional computed tomography (4DCT) scan pre- and post-ablation for atrial fibrillation. LA volumes were automatically segmented at every frame by a trained neural network and converted into surface meshes. A local endocardial strain was computed at a resolution of 2 mm from the deforming meshes. The LA endocardial surface was automatically divided into five walls and further into 24 sub-segments using the left atrial positioning system. Intraoperative notes gathered during the ablation procedure informed which regions received ablative treatment. In an average of 18 months after ablation, the strain is decreased by 16.3% in the septal wall and by 18.3% in the posterior wall. In subjects who were imaged in sinus rhythm both before and after the procedure, the effect of ablation reduced the regional strain by 15.3% (p = 0.012). Post-ablation strain maps demonstrated spatial patterns of reduced strain which matched the ablation pattern. This study demonstrates the capability of 4DCT to capture high-resolution changes in the left atrial strain in response to tissue damage and explores the quantification of a regionally reduced LA function from the scar tissue.

Radiological data processing system: lifecycle management and annotation.

Bobrovskaya T, Vasilev Y, Vladzymyrskyy A, Omelyanskaya O, Kosov P, Krylova E, Ponomarenko A, Burtsev T, Savkina E, Kodenko M, Kasimov S, Medvedev K, Kovalchuk A, Zinchenko V, Rumyantsev D, Kazarinova V, Semenov S, Arzamasov K

pubmed logopapersJun 20 2025
To develop a platform for automated processing of radiological datasets that operates independently of medical information systems. The platform maintains datasets throughout their lifecycle, from data retrieval to annotation and presentation. The platform employs a modular structure in which modules can operate independently or in conjunction. Each module sequentially processes output from the preceding module. The platform incorporates a local database containing textual study protocols, a radiology information system (RIS), and storage for labeled studies and reports. A platform equipped with local permanent and temporary file storages facilitates radiological datasets processing. The platform's modules enable data search, extraction, anonymization, annotation, generation of annotated files, and standardized documentation of datasets. The platform provides a comprehensive workflow for radiological dataset management and is currently operational at the Center for Diagnostics and Telemedicine. Future development will focus on expanding platform functionality.

Artificial intelligence-based tumor size measurement on mammography: agreement with pathology and comparison with human readers' assessments across multiple imaging modalities.

Kwon MR, Kim SH, Park GE, Mun HS, Kang BJ, Kim YT, Yoon I

pubmed logopapersJun 20 2025
To evaluate the agreement between artificial intelligence (AI)-based tumor size measurements of breast cancer and the final pathology and compare these results with those of other imaging modalities. This retrospective study included 925 women (mean age, 55.3 years ± 11.6) with 936 breast cancers, who underwent digital mammography, breast ultrasound, and magnetic resonance imaging before breast cancer surgery. AI-based tumor size measurement was performed on post-processed mammographic images, outlining areas with AI abnormality scores of 10, 50, and 90%. Absolute agreement between AI-based tumor sizes, image modalities, and histopathology was assessed using intraclass correlation coefficient (ICC) analysis. Concordant and discordant cases between AI measurements and histopathologic examinations were compared. Tumor size with an abnormality score of 50% showed the highest agreement with histopathologic examination (ICC = 0.54, 95% confidential interval [CI]: 0.49-0.59), showing comparable agreement with mammography (ICC = 0.54, 95% CI: 0.48-0.60, p = 0.40). For ductal carcinoma in situ and human epidermal growth factor receptor 2-positive cancers, AI revealed a higher agreement than that of mammography (ICC = 0.76, 95% CI: 0.67-0.84 and ICC = 0.73, 95% CI: 0.52-0.85). Overall, 52.0% (487/936) of cases were discordant, with these cases more commonly observed in younger patients with dense breasts, multifocal malignancies, lower abnormality scores, and different imaging characteristics. AI-based tumor size measurements with abnormality scores of 50% showed moderate agreement with histopathology but demonstrated size discordance in more than half of the cases. While comparable to mammography, its limitations emphasize the need for further refinement and research.

Emergency radiology: roadmap for radiology departments.

Aydin S, Ece B, Cakmak V, Kocak B, Onur MR

pubmed logopapersJun 20 2025
Emergency radiology has evolved into a significant subspecialty over the past 2 decades, facing unique challenges including escalating imaging volumes, increasing study complexity, and heightened expectations from clinicians and patients. This review provides a comprehensive overview of the key requirements for an effective emergency radiology unit. Emergency radiologists play a crucial role in real-time decision-making by providing continuous 24/7 support, requiring expertise across various organ systems and close collaboration with emergency physicians and specialists. Beyond image interpretation, emergency radiologists are responsible for organizing staff schedules, planning equipment, determining imaging protocols, and establishing standardized reporting systems. Operational considerations in emergency radiology departments include efficient scheduling models such as circadian-based scheduling, strategic equipment organization with primary imaging modalities positioned near emergency departments, and effective imaging management through structured ordering systems and standardized protocols. Preparedness for mass casualty incidents requires a well-organized workflow process map detailing steps from patient transfer to image acquisition and interpretation, with clear task allocation and imaging pathways. Collaboration between emergency radiologists and physicians is essential, with accurate communication facilitated through various channels and structured reporting templates. Artificial intelligence has emerged as a transformative tool in emergency radiology, offering potential benefits in both interpretative domains (detecting intracranial hemorrhage, pulmonary embolism, acute ischemic stroke) and non-interpretative applications (triage systems, protocol assistance, quality control). Despite implementation challenges including clinician skepticism, financial considerations, and ethical issues, AI can enhance diagnostic accuracy and workflow optimization. Teleradiology provides solutions for staff shortages, particularly during off-hours, with hybrid models allowing radiologists to work both on-site and remotely. This review aims to guide stakeholders in establishing and maintaining efficient emergency radiology services to improve patient outcomes.
Page 42 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.