Sort by:
Page 44 of 2252246 results

Generalizable model to predict new or progressing compression fractures in tumor-infiltrated thoracolumbar vertebrae in an all-comer population.

Flores A, Nitturi V, Kavoussi A, Feygin M, Andrade de Almeida RA, Ramirez Ferrer E, Anand A, Nouri S, Allam AK, Ricciardelli A, Reyes G, Reddy S, Rampalli I, Rhines L, Tatsui CE, North RY, Ghia A, Siewerdsen JH, Ropper AE, Alvarez-Breckenridge C

pubmed logopapersJun 20 2025
Neurosurgical evaluation is required in the setting of spinal metastases at high risk for leading to a vertebral body fracture. Both irradiated and nonirradiated vertebrae are affected. Understanding fracture risk is critical in determining management, including follow-up timing and prophylactic interventions. Herein, the authors report the results of a machine learning model that predicts the development or progression of a pathological vertebral compression fracture (VCF) in metastatic tumor-infiltrated thoracolumbar vertebrae in an all-comer population. A multi-institutional all-comer cohort of patients with tumor containing vertebral levels spanning T1 through L5 and at least 1 year of follow-up was included in the study. Clinical features of the patients, diseases, and treatments were collected. CT radiomic features of the vertebral bodies were extracted from tumor-infiltrated vertebrae that did or did not subsequently fracture or progress. Recursive feature elimination (RFE) of both radiomic and clinical features was performed. The resulting features were used to create a purely clinical model, purely radiomic model, and combined clinical-radiomic model. A Spine Instability Neoplastic Score (SINS) model was created for a baseline performance comparison. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity (with 95% confidence intervals) with tenfold cross-validation. Within 1 year from initial CT, 123 of 977 vertebrae developed VCF. Selected clinical features included SINS, SINS component for < 50% vertebral body collapse, SINS component for "none of the prior 3" (i.e., "none of the above" on the SINS component for vertebral body involvement), histology, age, and BMI. Of the 2015 radiomic features, RFE selected 19 to be used in the pure radiomic model and the combined clinical-radiomic model. The best performing model was a random forest classifier using both clinical and radiomic features, demonstrating an AUROC of 0.86 (95% CI 0.82-0.9), sensitivity of 0.78 (95% CI 0.70-0.84), and specificity of 0.80 (95% CI 0.77-0.82). This performance was significantly higher than the best SINS-alone model (AUROC 0.75, 95% CI 0.70-0.80) and outperformed the clinical-only model but not in a statistically significant manner (AUROC 0.82, 95% CI 0.77-0.87). The authors developed a clinically generalizable machine learning model to predict the risk of a new or progressing VCF in an all-comer population. This model addresses limitations from prior work and was trained on the largest cohort of patients and vertebrae published to date. If validated, the model could lead to more consistent and systematic identification of high-risk vertebrae, resulting in faster, more accurate triage of patients for optimal management.

Image-Based Search in Radiology: Identification of Brain Tumor Subtypes within Databases Using MRI-Based Radiomic Features.

von Reppert M, Chadha S, Willms K, Avesta A, Maleki N, Zeevi T, Lost J, Tillmanns N, Jekel L, Merkaj S, Lin M, Hoffmann KT, Aneja S, Aboian MS

pubmed logopapersJun 20 2025
Existing neuroradiology reference materials do not cover the full range of primary brain tumor presentations, and text-based medical image search engines are limited by the lack of consistent structure in radiology reports. To address this, an image-based search approach is introduced here, leveraging an institutional database to find reference MRIs visually similar to presented query cases. Two hundred ninety-five patients (mean age and standard deviation, 51 ± 20 years) with primary brain tumors who underwent surgical and/or radiotherapeutic treatment between 2000 and 2021 were included in this retrospective study. Semiautomated convolutional neural network-based tumor segmentation was performed, and radiomic features were extracted. The data set was split into reference and query subsets, and dimensionality reduction was applied to cluster reference cases. Radiomic features extracted from each query case were projected onto the clustered reference cases, and nearest neighbors were retrieved. Retrieval performance was evaluated by using mean average precision at k, and the best-performing dimensionality reduction technique was identified. Expert readers independently rated visual similarity by using a 5-point Likert scale. t-Distributed stochastic neighbor embedding with 6 components was the highest-performing dimensionality reduction technique, with mean average precision at 5 ranging from 78%-100% by tumor type. The top 5 retrieved reference cases showed high visual similarity Likert scores with corresponding query cases (76% 'similar' or 'very similar'). We introduce an image-based search method for exploring historical MR images of primary brain tumors and fetching reference cases closely resembling queried ones. Assessment involving comparison of tumor types and visual similarity Likert scoring by expert neuroradiologists validates the effectiveness of this method.

BioTransX: A novel bi-former based hybrid model with bi-level routing attention for brain tumor classification with explainable insights.

Rajpoot R, Jain S, Semwal VB

pubmed logopapersJun 20 2025
Brain tumors, known for their life-threatening implications, underscore the urgency of precise and interpretable early detection. Expertise remains essential for accurate identification through MRI scans due to the intricacies involved. However, the growing recognition of automated detection systems holds the potential to enhance accuracy and improve interpretability. By consistently providing easily comprehensible results, these automated solutions could boost the overall efficiency and effectiveness of brain tumor diagnosis, promising a transformative era in healthcare. This paper introduces a new hybrid model, BioTransX, which uses a bi-former encoder mechanism, a dynamic sparse attention-based transformer, in conjunction with ensemble convolutional networks. Recognizing the importance of better contrast and data quality, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) during the initial data processing stage. Additionally, to address the crucial aspect of model interpretability, we integrated Grad-CAM and Gradient Attention Rollout, which elucidate decisions by highlighting influential regions within medical images. Our hybrid deep learning model was primarily evaluated on the Kaggle MRI dataset for multi-class brain tumor classification, achieving a mean accuracy and F1-score of 99.29%. To validate its generalizability and robustness, BioTransX was further tested on two additional benchmark datasets, BraTS and Figshare, where it consistently maintained high performance across key evaluation metrics. The transformer-based hybrid model demonstrated promising performance in explainable identification and offered notable advantages in computational efficiency and memory usage. These strengths differentiate BioTransX from existing models in the literature and make it ideal for real-world deployment in resource-constrained clinical infrastructures.

Three-dimensional U-Net with transfer learning improves automated whole brain delineation from MRI brain scans of rats, mice, and monkeys.

Porter VA, Hobson BA, D'Almeida AJ, Bales KL, Lein PJ, Chaudhari AJ

pubmed logopapersJun 20 2025
Automated whole-brain delineation (WBD) techniques often struggle to generalize across pre-clinical studies due to variations in animal models, magnetic resonance imaging (MRI) scanners, and tissue contrasts. We developed a 3D U-Net neural network for WBD pre-trained on organophosphate intoxication (OPI) rat brain MRI scans. We used transfer learning (TL) to adapt this OPI-pretrained network to other animal models: rat model of Alzheimer's disease (AD), mouse model of tetramethylenedisulfotetramine (TETS) intoxication, and titi monkey model of social bonding. We assessed an OPI-pretrained 3D U-Net across animal models under three conditions: (1) direct application to each dataset; (2) utilizing TL; and (3) training disease-specific U-Net models. For each condition, training dataset size (TDS) was optimized, and output WBDs were compared to manual segmentations for accuracy. The OPI-pretrained 3D U-Net (TDS = 100) achieved the best accuracy [median[min-max]] for the test OPI dataset with a Dice coefficient (DC) = [0.987 [0.977-0.992]] and Hausdorff distance (HD) = [0.86 [0.55-1.27]]mm. TL improved generalization across all models [AD (TDS = 40): DC = 0.987 [0.977-0.992] and HD = 0.72 [0.54-1.00]mm; TETS (TDS = 10): DC = 0.992 [0.984-0.993] and HD = 0.40 [0.31-0.50]mm; Monkey (TDS = 8): DC = 0.977 [0.968-0.979] and HD = 3.03 [2.19-3.91]mm], showing performance comparable to disease-specific networks. The OPI-pretrained 3D U-Net with TL achieved accuracy comparable to disease-specific networks with reduced training data (TDS ≤ 40 scans) across all models. Future work will focus on developing a multi-region delineation pipeline for pre-clinical MRI brain data, utilizing the proposed WBD as an initial step.

Generative deep-learning-model based contrast enhancement for digital subtraction angiography using a text-conditioned image-to-image model.

Takata T, Yamada K, Yamamoto M, Kondo H

pubmed logopapersJun 20 2025
Digital subtraction angiography (DSA) is an essential imaging technique in interventional radiology, enabling detailed visualization of blood vessels by subtracting pre- and post-contrast images. However, reduced contrast, either accidental or intentional, can impair the clarity of vascular structures. This issue becomes particularly critical in patients with chronic kidney disease (CKD), where minimizing iodinated contrast is necessary to reduce the risk of contrast-induced nephropathy (CIN). This study explored the potential of using a generative deep-learning-model based contrast enhancement technique for DSA. A text-conditioned image-to-image model was developed using Stable Diffusion, augmented with ControlNet to reduce hallucinations and Low-Rank Adaptation for model fine-tuning. A total of 1207 DSA series were used for training and testing, with additional low-contrast images generated through data augmentation. The model was trained using tagged text labels and evaluated using metrics such as Root Mean Square (RMS) contrast, Michelson contrast, signal-to-noise ratio (SNR), and entropy. Evaluation results indicated significant improvements, with RMS contrast, Michelson contrast, and entropy respectively increased from 7.91 to 17.7, 0.875 to 0.992, and 3.60 to 5.60, reflecting enhanced detail. However, SNR decreased from 21.3 to 8.50, indicating increased noise. This study demonstrated the feasibility of deep learning-based contrast enhancement for DSA images and highlights the potential for generative deep-learning-model to improve angiographic imaging. Further refinements, particularly in artifact suppression and clinical validation, are necessary for practical implementation in medical settings.

Combination of 2D and 3D nnU-Net for ground glass opacity segmentation in CT images of Post-COVID-19 patients.

Nguyen QH, Hoang DA, Pham HV

pubmed logopapersJun 20 2025
The COVID-19 pandemic plays a significant roles in the global health, highlighting the imperative for effective management of post-recovery symptoms. Within this context, Ground Glass Opacity (GGO) in lung computed tomography CT scans emerges as a critical indicator for early intervention. Recently, most researchers have investigated initially a challenge to refine techniques for GGO segmentation. These approaches aim to scrutinize and juxtapose cutting-edge methods for analyzing lung CT images of patients recuperating from COVID-19. While many methods in this challenge utilize the nnU-Net architecture, its general approach has not concerned completely GGO areas such as marking infected areas, ground-glass opacity, irregular shapes and fuzzy boundaries. This research has investigated a specialized machine learning algorithm, advancing the nn-UNet framework to accurately segment GGO in lung CT scans of post-COVID-19 patients. We propose a novel approach for two-stage image segmentation methods based on nnU-Net 2D and 3D models including lung and shadow image segmentation, incorporating the attention mechanism. The combination models enhance automatic segmentation and models' accuracy when using different error function in the training process. Experimental results show that the proposed model's outcomes DSC score ranks fifth among the compared results. The proposed method has also the second-highest sensitivity value among the methods, which shows that this method has a higher true segmentation rate than most of the other methods. The proposed method has achieved a Hausdorff95 of 54.566, Surface dice of 0.7193, Sensitivity of 0.7528, and Specificity of 0.7749. As compared with the state-of-the-art methods, the proposed model in experimental results is improved much better than the current methods in term of segmentation of infected areas. The proposed model has been deployed in the case study of real-world problems with the combination of 2D and 3D models. It is demonstrated the capacity to comprehensively detect lung lesions correctly. Additionally, the boundary loss function has assisted in achieving more precise segmentation for low-resolution images. Initially segmenting lung area has reduced the volume of images requiring processing, while diminishing for training process.

Robust Training with Data Augmentation for Medical Imaging Classification

Josué Martínez-Martínez, Olivia Brown, Mostafa Karami, Sheida Nabavi

arxiv logopreprintJun 20 2025
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.

Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network

Mahin Montasir Afif, Abdullah Al Noman, K. M. Tahsin Kabir, Md. Mortuza Ahmmed, Md. Mostafizur Rahman, Mufti Mahmud, Md. Ashraful Babu

arxiv logopreprintJun 20 2025
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

Significance of Papillary and Trabecular Muscular Volume in Right Ventricular Volumetry with Cardiac MR Imaging.

Shibagaki Y, Oka H, Imanishi R, Shimada S, Nakau K, Takahashi S

pubmed logopapersJun 20 2025
Pulmonary valve regurgitation after repaired Tetralogy of Fallot (TOF) or double-outlet right ventricle (DORV) causes hypertrophy and papillary muscle enlargement. Cardiac magnetic resonance imaging (CMR) can evaluate the right ventricular (RV) dilatation, but the effect of trabecular and papillary muscle (TPM) exclusion on RV volume for TOF or DORV reoperation decision is unclear. Twenty-three patients with repaired TOF or DORV, and 19 healthy controls aged ≥15, underwent CMR from 2012 to 2022. TPM volume is measured by artificial intelligence. Reoperation was considered when RV end-diastolic volume index (RVEDVI) >150 mL/m<sup>2</sup> or RV end-systolic volume index (RVESVI) >80 mL/m<sup>2</sup>. RV volumes were higher in the disease group than controls (P α 0.001). RV mass and TPM volumes were higher in the disease group (P α 0.001). The reduction rate of RV volumes due to the exclusion of TPM volume was 6.3% (2.1-10.5), 11.7% (6.9-13.8), and 13.9% (9.5-19.4) in the control, volume load, and volume α pressure load groups, respectively. TPM/RV volumes were higher in the volume α pressure load group (control: 0.07 g/mL, volume: 0.14 g/mL, volume α pressure: 0.17 g/mL), and correlated with QRS duration (R α 0.77). In 3 patients in the volume α pressure, RV volume included TPM was indicated for reoperation, but when RV volume was reduced by TPM removal, reoperation was no indicated. RV volume measurements, including TPM in volume α pressure load, may help determine appropriate volume recommendations for reoperation.
Page 44 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.