Automatic Detection of B-Lines in Lung Ultrasound Based on the Evaluation of Multiple Characteristic Parameters Using Raw RF Data.
Shen W, Zhang Y, Zhang H, Zhong H, Wan M
B-line artifacts in lung ultrasound, pivotal for diagnosing pulmonary conditions, warrant automated recognition to enhance diagnostic accuracy. In this paper, a lung ultrasound B-line vertical artifact identification method based on radio frequency (RF) signal was proposed. B-line regions were distinguished from non-B-line regions by inputting multiple characteristic parameters into nonlinear support vector machine (SVM). Six characteristic parameters were evaluated, including permutation entropy, information entropy, kurtosis, skewness, Nakagami shape factor, and approximate entropy. Following the evaluation that demonstrated the performance differences in parameter recognition, Principal Component Analysis (PCA) was utilized to reduce the dimensionality to a four-dimensional feature set for input into a nonlinear Support Vector Machine (SVM) for classification purposes. Four types of experiments were conducted: a sponge with dripping water model, gelatin phantoms containing either glass beads or gelatin droplets, and in vivo experiments. By employing precise feature selection and analyzing scan lines rather than full images, this approach significantly reduced the dependency on large image datasets without compromising discriminative accuracy. The method exhibited performance comparable to contemporary image-based deep learning approaches, which, while highly effective, typically necessitate extensive data for training and require expert annotation of large datasets to establish ground truth. Owing to the optimized architecture of our model, efficient sample recognition was achieved, with the capability to process between 27,000 and 33,000 scan lines per second (resulting in a frame rate exceeding 100 FPS, with 256 scan lines per frame), thus supporting real-time analysis. The results demonstrate that the accuracy of the method to classify a scan line as belonging to a B-line region was up to 88%, with sensitivity reaching up to 90%, specificity up to 87%, and an F1-score up to 89%. This approach effectively reflects the performance of scan line classification pertinent to B-line identification. Our approach reduces the reliance on large annotated datasets, thereby streamlining the preprocessing phase.