Incorporating Artificial Intelligence into Fracture Risk Assessment: Using Clinical Imaging to Predict the Unpredictable.

Authors

Kong SH

Affiliations (1)

  • Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.

Abstract

Artificial intelligence (AI) is increasingly being explored as a complementary tool to traditional fracture risk assessment methods. Conventional approaches, such as bone mineral density measurement and established clinical risk calculators, provide populationlevel stratification but often fail to capture the structural nuances of bone fragility. Recent advances in AI-particularly deep learning techniques applied to imaging-enable opportunistic screening and individualized risk estimation using routinely acquired radiographs and computed tomography (CT) data. These models demonstrate improved discrimination for osteoporotic fracture detection and risk prediction, supporting applications such as time-to-event modeling and short-term prognosis. CT- and radiograph-based models have shown superiority over conventional metrics in diverse cohorts, while innovations like multitask learning and survival plots contribute to enhanced interpretability and patient-centered communication. Nevertheless, challenges related to model generalizability, data bias, and automation bias persist. Successful clinical integration will require rigorous external validation, transparent reporting, and seamless embedding into electronic medical systems. This review summarizes recent advances in AI-driven fracture assessment, critically evaluates their clinical promise, and outlines a roadmap for translation into real-world practice.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.