Sort by:
Page 418 of 7477461 results

Moore N, O'Regan P, Young R, Curran G, Waldron M, O'Mahony A, Suleiman ME, Murphy MJ, Maher M, England A, McEntee MF

pubmed logopapersJul 25 2025
Cystic fibrosis (CF) is a prevalent autosomal recessive disorder, with lung complications being the primary cause of morbidity and mortality. In paediatric patients, structural lung changes begin early, necessitating prompt detection to guide treatment and delay disease progression. This study evaluates ultra-low-dose CT (ULDCT) versus chest x-rays  (CXR) for children with CF (CwCF) lung disease assessment. ULDCT uses AI-enhanced deep-learning iterative reconstruction to achieve radiation doses comparable to a CXR. This prospective study recruited radiographers and radiologists to assess the image quality (IQ) of ten paired ULDCT and CXR images of CwCF from a single centre. Statistical analyses, including the Wilcoxon Signed Rank test and visual grading characteristic (VGC) analysis, compared diagnostic confidence and anatomical detail. Seventy-five participants were enrolled, 25 radiologists and 50 radiographers. The majority (88%) preferred ULDCT over CXR for monitoring CF lung disease due to higher perceived confidence (p ≤ 0.001) and better IQ ratings (p ≤ 0.05), especially among radiologists (area under the VGC curve and its 95% CI was 0.63 (asymmetric 95% CI: 0.51-0.73; p ≤ 0.05). While ULDCT showed no significant differences in anatomical visualisation compared to CXR, the overall IQ for lung pathology assessment was rated superior. ULDCT offers superior IQ over CXR in CwCF, with similar radiation doses. It also enhances diagnostic confidence, supporting its use as a viable CXR alternative. Standardising CT protocols to optimise IQ and minimise radiation is essential to improve disease monitoring in this vulnerable group. Question How does chest X-ray (CXR) IQ in children compare to ULDCT at similar radiation doses for assessing CF-related lung disease? Findings ULDCT offers superior IQ over CXR in CwCF. Participants preferred ULDCT due to higher perceived confidence levels and superior IQ. Clinical relevance ULDCT can enhance diagnosis in CwCF while maintaining comparable radiation doses. ULDCT also enhances diagnostic confidence, supporting its use as a viable CXR alternative.

Beyer M, Abazi S, Tourbier C, Burde A, Vinayahalingam S, Ileșan RR, Thieringer FM

pubmed logopapersJul 25 2025
This study presents a fully automated digital workflow using artificial intelligence (AI) to create patient-specific cutting guides for mandible-angle osteotomies in facial feminization surgery (FFS). The goal is to achieve predictable, accurate, and safe results with minimal user input, addressing the time and effort required for conventional guide creation. Three-dimensional CT images of 30 male patients were used to develop and validate a workflow that automates two key processes: (1) segmentation of the mandible using a convolutional neural network (3D U-Net architecture) and (2) virtual design of osteotomy-specific cutting guides. Segmentation accuracy was assessed through comparison with expert manual segmentations using the dice similarity coefficient (DSC) and mean surface distance (MSD). The precision of the cutting guides was evaluated based on osteotomy line accuracy and fit. Workflow efficiency was measured by comparing the time required for automated versus manual planning by expert and novice users. The AI-based workflow achieved a median DSC of 0.966 and a median MSD of 0.212 mm, demonstrating high accuracy. The median planning time was reduced to 1 min and 38 s with the automated system, compared to 19 min and 37 s for an expert and 26 min and 39 s for a novice, representing 10- and 16-fold time reductions, respectively. The AI-based workflow is accurate, efficient, and cost-effective, significantly reducing planning time while maintaining clinical precision. This workflow improves surgical outcomes with precise and reliable cutting guides, enhancing efficiency and accessibility for clinicians, including those with limited experience in designing cutting guides.

Sanders JV, Keigher K, Oliver M, Joshi K, Lopes D

pubmed logopapersJul 25 2025
BackgroundNon-contrast computed tomography (NCCT) is the first image for stroke assessment, but its sensitivity for detecting large vessel occlusion (LVO) is limited. Artificial intelligence (AI) algorithms may contribute to a faster LVO diagnosis using only NCCT. This study evaluates the performance and the potential diagnostic time saving of Methinks LVO AI algorithm in a U.S. multi-facility stroke network.MethodsThis retrospective pilot study reviewed NCCT and computed tomography angiography (CTA) images between 2015 and 2023. The Methinks AI algorithm, designed to detect LVOs in the internal carotid artery and middle cerebral artery, was tested for sensitivity, specificity, and predictive values. A neuroradiologist reviewed cases to establish a gold standard. To evaluate potential time saving in workflow, time gaps between NCCT and CTA were analyzed and stratified into four groups in true positive cases: Group 1 (<10 min), Group 2 (10-30 min), Group 3 (30-60 min), and Group 4 (>60 min).ResultsFrom a total of 1155 stroke codes, 608 NCCT exams were analyzed. Methinks LVO demonstrated 75% sensitivity and 83% specificity, identifying 146 out of 194 confirmed LVO cases correctly. The PPV of the algorithm was 72%. The NPV was 83% (considering 'other occlusion', 'stenosis' and 'posteriors' as negatives), and 73% considered the same conditions as positives. Among the true positive cases, we found 112 patients Group 1, 32 patients in Group 2, 15 patients in Group 3, 3 patients in Group 4.ConclusionThe Methinks AI algorithm shows promise for improving LVO detection from NCCT, especially in resource limited settings. However, its sensitivity remains lower than CTA-based systems, suggesting the need for further refinement.

Blinc A, Nicolaides AN, Poredoš P, Paraskevas KI, Heiss C, Müller O, Rammos C, Stanek A, Jug B

pubmed logopapersJul 25 2025
<b></b>Risk factor-based algorithms give a good estimate of cardiovascular (CV) risk at the population level but are often inaccurate at the individual level. Detecting preclinical atherosclerotic plaques in the carotid and common femoral arterial bifurcations by ultrasound is a simple, non-invasive way of detecting atherosclerosis in the individual and thus more accurately estimating his/her risk of future CV events. The presence of plaques in these bifurcations is independently associated with increased risk of CV death and myocardial infarction, even after adjusting for traditional risk factors, while ultrasonographic characteristics of vulnerable plaque are mostly associated with increased risk for ipsilateral ischaemic stroke. The predictive value of carotid and femoral plaques for CV events increases in proportion to plaque burden and especially by plaque progression over time. Assessing the burden of carotid and/or common femoral bifurcation plaques enables reclassification of a significant number of individuals with low risk according risk factor-based algorithms into intermediate or high CV risk and intermediate risk individuals into the low- or high CV risk. Ongoing multimodality imaging studies, supplemented by clinical and genetic data, aided by machine learning/ artificial intelligence analysis are expected to advance our understanding of atherosclerosis progression from the asymptomatic into the symptomatic phase and personalize prevention.

Zhao P, Zhu S

pubmed logopapersJul 25 2025
Intervertebral disc degeneration (IDD) is a major contributor to chronic low back pain. Magnetic resonance imaging (MRI) serves as the gold standard for IDD assessment, yet manual grading is often subjective and inconsistent. With advances in artificial intelligence (AI), particularly deep learning, automated detection and classification of IDD from MRI has become increasingly feasible. This narrative review aims to provide a comprehensive overview of AI applications-especially machine learning and deep learning techniques-for MRI-based detection and grading of lumbar disc degeneration, highlighting their clinical value, current limitations, and future directions. Relevant studies were reviewed and summarized based on thematic structure. The review covers classical methods (e.g., support vector machines), deep learning models (e.g., CNNs, SpineNet, ResNet, U-Net), and hybrid approaches incorporating transformers and multitask learning. Technical details, model architectures, performance metrics, and representative datasets were synthesized and discussed. AI systems have demonstrated promising performance in automatic IDD grading, in some cases matching or surpassing expert radiologists. CNN-based models showed high accuracy and reproducibility, while hybrid models further enhanced segmentation and classification tasks. However, challenges remain in generalizability, data imbalance, interpretability, and regulatory integration. Tools such as Grad-CAM and SHAP improve model transparency, while methods like few-shot learning and data augmentation can alleviate data limitations. AI-assisted analysis of MRI for lumbar disc degeneration offers significant potential to enhance diagnostic efficiency and consistency. While current models are encouraging, real-world clinical implementation requires further advancements in interpretability, data diversity, ethical standards, and large-scale validation.

Julia Siekiera, Stefan Kramer

arxiv logopreprintJul 25 2025
Artificial intelligence is increasingly leveraged across various domains to automate decision-making processes that significantly impact human lives. In medical image analysis, deep learning models have demonstrated remarkable performance. However, their inherent complexity makes them black box systems, raising concerns about reliability and interpretability. Counterfactual explanations provide comprehensible insights into decision processes by presenting hypothetical "what-if" scenarios that alter model classifications. By examining input alterations, counterfactual explanations provide patterns that influence the decision-making process. Despite their potential, generating plausible counterfactuals that adhere to similarity constraints providing human-interpretable explanations remains a challenge. In this paper, we investigate this challenge by a model-specific optimization approach. While deep generative models such as variational autoencoders (VAEs) exhibit significant generative power, probabilistic models like sum-product networks (SPNs) efficiently represent complex joint probability distributions. By modeling the likelihood of a semi-supervised VAE's latent space with an SPN, we leverage its dual role as both a latent space descriptor and a classifier for a given discrimination task. This formulation enables the optimization of latent space counterfactuals that are both close to the original data distribution and aligned with the target class distribution. We conduct experimental evaluation on the cheXpert dataset. To evaluate the effectiveness of the integration of SPNs, our SPN-guided latent space manipulation is compared against a neural network baseline. Additionally, the trade-off between latent variable regularization and counterfactual quality is analyzed.

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

Guoping Xu, Yan Dai, Hengrui Zhao, Ying Zhang, Jie Deng, Weiguo Lu, You Zhang

arxiv logopreprintJul 25 2025
Purpose: Accurate tumor segmentation is vital for adaptive radiation therapy (ART) but remains time-consuming and user-dependent. Segment Anything Model 2 (SAM2) shows promise for prompt-based segmentation but struggles with tumor accuracy. We propose prior knowledge-based augmentation strategies to enhance SAM2 for ART. Methods: Two strategies were introduced to improve SAM2: (1) using prior MR images and annotations as contextual inputs, and (2) improving prompt robustness via random bounding box expansion and mask erosion/dilation. The resulting model, SAM2-Aug, was fine-tuned and tested on the One-Seq-Liver dataset (115 MRIs from 31 liver cancer patients), and evaluated without retraining on Mix-Seq-Abdomen (88 MRIs, 28 patients) and Mix-Seq-Brain (86 MRIs, 37 patients). Results: SAM2-Aug outperformed convolutional, transformer-based, and prompt-driven models across all datasets, achieving Dice scores of 0.86(liver), 0.89(abdomen), and 0.90(brain). It demonstrated strong generalization across tumor types and imaging sequences, with improved performance in boundary-sensitive metrics. Conclusions: Incorporating prior images and enhancing prompt diversity significantly boosts segmentation accuracy and generalizability. SAM2-Aug offers a robust, efficient solution for tumor segmentation in ART. Code and models will be released at https://github.com/apple1986/SAM2-Aug.

Michal K. Grzeszczyk, Tomasz Szczepański, Pawel Renc, Siyeop Yoon, Jerome Charton, Tomasz Trzciński, Arkadiusz Sitek

arxiv logopreprintJul 25 2025
Scoring systems are widely adopted in medical applications for their inherent simplicity and transparency, particularly for classification tasks involving tabular data. In this work, we introduce RegScore, a novel, sparse, and interpretable scoring system specifically designed for regression tasks. Unlike conventional scoring systems constrained to integer-valued coefficients, RegScore leverages beam search and k-sparse ridge regression to relax these restrictions, thus enhancing predictive performance. We extend RegScore to bimodal deep learning by integrating tabular data with medical images. We utilize the classification token from the TIP (Tabular Image Pretraining) transformer to generate Personalized Linear Regression parameters and a Personalized RegScore, enabling individualized scoring. We demonstrate the effectiveness of RegScore by estimating mean Pulmonary Artery Pressure using tabular data and further refine these estimates by incorporating cardiac MRI images. Experimental results show that RegScore and its personalized bimodal extensions achieve performance comparable to, or better than, state-of-the-art black-box models. Our method provides a transparent and interpretable approach for regression tasks in clinical settings, promoting more informed and trustworthy decision-making. We provide our code at https://github.com/SanoScience/RegScore.

Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang

arxiv logopreprintJul 25 2025
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/
Page 418 of 7477461 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,400+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.