Sort by:
Page 387 of 7347338 results

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Erin Rainville, Amirhossein Rasoulian, Hassan Rivaz, Yiming Xiao

arxiv logopreprintAug 1 2025
Intracranial aneurysms (IAs) are abnormal dilations of cerebral blood vessels that, if ruptured, can lead to life-threatening consequences. However, their small size and soft contrast in radiological scans often make it difficult to perform accurate and efficient detection and morphological analyses, which are critical in the clinical care of the disorder. Furthermore, the lack of large public datasets with voxel-wise expert annotations pose challenges for developing deep learning algorithms to address the issues. Therefore, we proposed a novel weakly supervised 3D multi-task UNet that integrates vesselness priors to jointly perform aneurysm detection and segmentation in time-of-flight MR angiography (TOF-MRA). Specifically, to robustly guide IA detection and segmentation, we employ the popular Frangi's vesselness filter to derive soft cerebrovascular priors for both network input and an attention block to conduct segmentation from the decoder and detection from an auxiliary branch. We train our model on the Lausanne dataset with coarse ground truth segmentation, and evaluate it on the test set with refined labels from the same database. To further assess our model's generalizability, we also validate it externally on the ADAM dataset. Our results demonstrate the superior performance of the proposed technique over the SOTA techniques for aneurysm segmentation (Dice = 0.614, 95%HD =1.38mm) and detection (false positive rate = 1.47, sensitivity = 92.9%).

Chen Z, He HL, Qi Z, Bi S, Yang H, Chen X, Xu T, Jin ZB, Yan S, Lu J

pubmed logopapersAug 1 2025
Alzheimer's disease (AD) is accompanied by alterations in retinal vascular density (VD), but the mechanisms remain unclear. This study investigated the relationship among cerebral amyloid-β (Aβ) deposition, VD, and cognitive decline. We enrolled 92 participants, including 47 AD patients and 45 healthy control (HC) participants. VD across retinal subregions was quantified using deep learning-based fundus photography, and cerebral Aβ deposition was measured with <sup>18</sup>F-florbetapir (<sup>18</sup>F-AV45) PET/MRI. Using the minimum bounding circle of the optic disc as the diameter (papilla-diameter, PD), VD (total, 0.5-1.0 PD, 1.0-1.5 PD, 1.5-2.0 PD, 2.0-2.5 PD) was calculated. Standardized uptake value ratio (SUVR) for Aβ deposition was computed for global and regional cortical areas, using the cerebellar cortex as the reference region. Cognitive performance was assessed with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Pearson correlation, multiple linear regression, and mediation analyses were used to explore Aβ deposition, VD, and cognition. AD patients exhibited significantly lower VD in all subregions compared to HC (p < 0.05). Reduced VD correlated with higher SUVR in the global cortex and a decline in cognitive abilities (p < 0.05). Mediation analysis indicated that VD influenced MMSE and MoCA through SUVR in the global cortex, with the most pronounced effects observed in the 1.0-1.5 PD range. Retinal VD is associated with cognitive decline, a relationship primarily mediated by cerebral Aβ deposition measured via <sup>18</sup>F-AV45 PET. These findings highlight the potential of retinal VD as a biomarker for early detection in AD.

Gupta P, Zhang Z, Song M, Michalowski M, Hu X, Stiglic G, Topaz M

pubmed logopapersAug 1 2025
Recent advancements in large language models (LLMs) have led to multimodal LLMs (MLLMs), which integrate multiple data modalities beyond text. Although MLLMs show promise, there is a gap in the literature that empirically demonstrates their impact in healthcare. This paper summarizes the applications of MLLMs in healthcare, highlighting their potential to transform health practices. A rapid literature review was conducted in August 2024 using World Health Organization (WHO) rapid-review methodology and PRISMA standards, with searches across four databases (Scopus, Medline, PubMed and ACM Digital Library) and top-tier conferences-including NeurIPS, ICML, AAAI, MICCAI, CVPR, ACL and EMNLP. Articles on MLLMs healthcare applications were included for analysis based on inclusion and exclusion criteria. The search yielded 115 articles, 39 included in the final analysis. Of these, 77% appeared online (preprints and published) in 2024, reflecting the emergence of MLLMs. 80% of studies were from Asia and North America (mainly China and US), with Europe lagging. Studies split evenly between pre-built MLLMs evaluations (60% focused on GPT versions) and custom MLLMs/frameworks development with task-specific customizations. About 81% of studies examined MLLMs for diagnosis and reporting in radiology, pathology, and ophthalmology, with additional applications in education, surgery, and mental health. Prompting strategies, used in 80% of studies, improved performance in nearly half. However, evaluation practices were inconsistent with 67% reported accuracy. Error analysis was mostly anecdotal, with only 18% categorized failure types. Only 13% validated explainability through clinician feedback. Clinical deployment was demonstrated in just 3% of studies, and workflow integration, governance, and safety were rarely addressed. MLLMs offer substantial potential for healthcare transformation through multimodal data integration. Yet, methodological inconsistencies, limited validation, and underdeveloped deployment strategies highlight the need for standardized evaluation metrics, structured error analysis, and human-centered design to support safe, scalable, and trustworthy clinical adoption.

Feng M, Li S, Song X, Mao W, Liu Y, Yuan Z

pubmed logopapersAug 1 2025
This study aimed to optimize the imaging time and image quality of T2WI-FS through the integration of Artificial Intelligence-Assisted Compressed Sensing (ACS) and respiratory triggering (RT). A prospective cohort study was conducted on one hundred thirty-four patients (99 males, 35 females; average age: 57.93 ± 9.40 years) undergoing liver MRI between March and July 2024. All patients were scanned using both breath-hold ACS-assisted T2WI (BH-ACS-T2WI) and respiratory-triggered ACS-assisted T2WI (RT-ACS-T2WI) sequences. Two experienced radiologists retrospectively analyzed regions of interest (ROIs), recorded primary lesions, and assessed key metrics including signal intensity (SI), standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), motion artifacts, hepatic vessel clarity, liver edge sharpness, lesion conspicuity, and overall image quality. Statistical comparisons were conducted using Mann-Whitney U test, Wilcoxon signed-rank test and intraclass correlation coefficient (ICC). Compared to BH-ACS-T2WI, RT-ACS-T2WI significantly reduced average imaging time from 38 s to 22.91 ± 3.36 s, achieving a 40 % reduction in scan duration. Additionally, RT-ACS-T2WI demonstrated superior performance across multiple parameters, including SI, SD, SNR, CNR, motion artifact reduction, hepatic vessel clarity, liver edge sharpness, lesion conspicuity (≤5 mm), and overall image quality (P < 0.05). Notably, the lesion detection rate was slightly higher with RT-ACS-T2WI (94 %) compared to BH-ACS-T2WI (90 %). The RT-ACS-T2WI sequence not only enhanced image quality but also reduced imaging time to approximately 23 s, making it particularly beneficial for patients unable to perform prolonged breath-holding maneuvers. This approach represents a promising advancement in optimizing liver MRI protocols.

Fenghe Tang, Bingkun Nian, Jianrui Ding, Wenxin Ma, Quan Quan, Chengqi Dong, Jie Yang, Wei Liu, S. Kevin Zhou

arxiv logopreprintAug 1 2025
In clinical practice, medical image analysis often requires efficient execution on resource-constrained mobile devices. However, existing mobile models-primarily optimized for natural images-tend to perform poorly on medical tasks due to the significant information density gap between natural and medical domains. Combining computational efficiency with medical imaging-specific architectural advantages remains a challenge when developing lightweight, universal, and high-performing networks. To address this, we propose a mobile model called Mobile U-shaped Vision Transformer (Mobile U-ViT) tailored for medical image segmentation. Specifically, we employ the newly purposed ConvUtr as a hierarchical patch embedding, featuring a parameter-efficient large-kernel CNN with inverted bottleneck fusion. This design exhibits transformer-like representation learning capacity while being lighter and faster. To enable efficient local-global information exchange, we introduce a novel Large-kernel Local-Global-Local (LGL) block that effectively balances the low information density and high-level semantic discrepancy of medical images. Finally, we incorporate a shallow and lightweight transformer bottleneck for long-range modeling and employ a cascaded decoder with downsample skip connections for dense prediction. Despite its reduced computational demands, our medical-optimized architecture achieves state-of-the-art performance across eight public 2D and 3D datasets covering diverse imaging modalities, including zero-shot testing on four unseen datasets. These results establish it as an efficient yet powerful and generalization solution for mobile medical image analysis. Code is available at https://github.com/FengheTan9/Mobile-U-ViT.

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Theo Di Piazza, Carole Lazarus, Olivier Nempont, Loic Boussel

arxiv logopreprintAug 1 2025
With the increasing number of CT scan examinations, there is a need for automated methods such as organ segmentation, anomaly detection and report generation to assist radiologists in managing their increasing workload. Multi-label classification of 3D CT scans remains a critical yet challenging task due to the complex spatial relationships within volumetric data and the variety of observed anomalies. Existing approaches based on 3D convolutional networks have limited abilities to model long-range dependencies while Vision Transformers suffer from high computational costs and often require extensive pre-training on large-scale datasets from the same domain to achieve competitive performance. In this work, we propose an alternative by introducing a new graph-based approach that models CT scans as structured graphs, leveraging axial slice triplets nodes processed through spectral domain convolution to enhance multi-label anomaly classification performance. Our method exhibits strong cross-dataset generalization, and competitive performance while achieving robustness to z-axis translation. An ablation study evaluates the contribution of each proposed component.

Aktas E, Ceylan N, Yaltirik Bilgin E, Bilgin E, Ince L

pubmed logopapersAug 1 2025
Pes planus is a common postural deformity related to the medial longitudinal arch of the foot. Radiographic examinations are important for reproducibility and objectivity; the most commonly used methods are the calcaneal inclusion angle and Mery angle. However, there may be variations in radiographic measurements due to human error and inexperience. In this study, a deep learning (DL)-based solution is proposed to solve this problem. Lateral radiographs of the right and left foot of 289 patients were taken and saved. The study population is a homogeneous group in terms of age and gender, and does not provide sufficient heterogeneity to represent the general population. These radiography (X-ray) images were measured by 2 different experts and the measurements were recorded. According to these measurements, each X-ray image is labeled as pes planus or non-pes planus. These images were then filtered and resized using Gaussian blurring and median filtering methods. As a result of these processes, 2 separate data sets were created. Generally accepted DL models (AlexNet, GoogleNet, SqueezeNet) were reconstructed to classify these images. The 2-category (pes planus/no pes planus) data in the 2 preprocessed and resized datasets were classified by fine-tuning these reconstructed transfer learning networks. The GoogleNet and SqueezeNet models achieved 100% accuracy, while AlexNet achieved 92.98% accuracy. These results show that the predictions of the models and the measurements of expert radiologists overlap to a large extent. DL-based diagnostic methods can be used as a decision support system in the diagnosis of pes planus. DL algorithms enhance the consistency of the diagnostic process by reducing measurement variations between different observers. DL systems accelerate diagnosis by automatically performing angle measurements from X-ray images, which is particularly beneficial in busy clinical settings by saving time. DL models integrated with smartphone cameras can facilitate the diagnosis of pes planus and serve as a screening tool, especially in regions with limited access to healthcare.

Rabby ASA, Chaudhary MFA, Saha P, Sthanam V, Nakhmani A, Zhang C, Barr RG, Bon J, Cooper CB, Curtis JL, Hoffman EA, Paine R, Puliyakote AK, Schroeder JD, Sieren JC, Smith BM, Woodruff PG, Reinhardt JM, Bhatt SP, Bodduluri S

pubmed logopapersAug 1 2025
Approximately 70% of adults with chronic obstructive pulmonary disease (COPD) remain undiagnosed. Opportunistic screening using chest computed tomography (CT) scans, commonly acquired in clinical practice, may be used to improve COPD detection through simple, clinically applicable deep-learning models. We developed a lightweight, convolutional neural network (COPDxNet) that utilizes minimally processed chest CT scans to detect COPD. We analyzed 13,043 inspiratory chest CT scans from the COPDGene participants, (9,675 standard-dose and 3,368 low-dose scans), which we randomly split into training (70%) and test (30%) sets at the participant level to no individual contributed to both sets. COPD was defined by postbronchodilator FEV /FVC < 0.70. We constructed a simple, four-block convolutional model that was trained on pooled data and validated on the held-out standard- and low-dose test sets. External validation was performed using standard-dose CT scans from 2,890 SPIROMICS participants and low-dose CT scans from 7,893 participants in the National Lung Screening Trial (NLST). We evaluated performance using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, Brier scores, and calibration curves. On COPDGene standard-dose CT scans, COPDxNet achieved an AUC of 0.92 (95% CI: 0.91 to 0.93), sensitivity of 80.2%, and specificity of 89.4%. On low-dose scans, AUC was 0.88 (95% CI: 0.86 to 0.90). When the COPDxNet model was applied to external validation datasets, it showed an AUC of 0.92 (95% CI: 0.91 to 0.93) in SPIROMICS and 0.82 (95% CI: 0.81 to 0.83) on NLST. The model was well-calibrated, with Brier scores of 0.11 for standard- dose and 0.13 for low-dose CT scans in COPDGene, 0.12 in SPIROMICS, and 0.17 in NLST. COPDxNet demonstrates high discriminative accuracy and generalizability for detecting COPD on standard- and low-dose chest CT scans, supporting its potential for clinical and screening applications across diverse populations.
Page 387 of 7347338 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,200+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.