Optimization strategy for fat-suppressed T2-weighted images in liver imaging: The combined application of AI-assisted compressed sensing and respiratory triggering.

Authors

Feng M,Li S,Song X,Mao W,Liu Y,Yuan Z

Affiliations (4)

  • Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, PR China.
  • Central Research Institute, United Imaging Healthcare, Shanghai 201807, PR China.
  • Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, PR China. Electronic address: [email protected].
  • Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, PR China. Electronic address: [email protected].

Abstract

This study aimed to optimize the imaging time and image quality of T2WI-FS through the integration of Artificial Intelligence-Assisted Compressed Sensing (ACS) and respiratory triggering (RT). A prospective cohort study was conducted on one hundred thirty-four patients (99 males, 35 females; average age: 57.93 ± 9.40 years) undergoing liver MRI between March and July 2024. All patients were scanned using both breath-hold ACS-assisted T2WI (BH-ACS-T2WI) and respiratory-triggered ACS-assisted T2WI (RT-ACS-T2WI) sequences. Two experienced radiologists retrospectively analyzed regions of interest (ROIs), recorded primary lesions, and assessed key metrics including signal intensity (SI), standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), motion artifacts, hepatic vessel clarity, liver edge sharpness, lesion conspicuity, and overall image quality. Statistical comparisons were conducted using Mann-Whitney U test, Wilcoxon signed-rank test and intraclass correlation coefficient (ICC). Compared to BH-ACS-T2WI, RT-ACS-T2WI significantly reduced average imaging time from 38 s to 22.91 ± 3.36 s, achieving a 40 % reduction in scan duration. Additionally, RT-ACS-T2WI demonstrated superior performance across multiple parameters, including SI, SD, SNR, CNR, motion artifact reduction, hepatic vessel clarity, liver edge sharpness, lesion conspicuity (≤5 mm), and overall image quality (P < 0.05). Notably, the lesion detection rate was slightly higher with RT-ACS-T2WI (94 %) compared to BH-ACS-T2WI (90 %). The RT-ACS-T2WI sequence not only enhanced image quality but also reduced imaging time to approximately 23 s, making it particularly beneficial for patients unable to perform prolonged breath-holding maneuvers. This approach represents a promising advancement in optimizing liver MRI protocols.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.