Sort by:
Page 310 of 6626611 results

Saida T, Iima M, Ito R, Ueda D, Nishioka K, Kurokawa R, Kawamura M, Hirata K, Honda M, Takumi K, Ide S, Sugawara S, Watabe T, Sakata A, Yanagawa M, Sofue K, Oda S, Naganawa S

pubmed logopapersAug 2 2025
This review provides a comprehensive overview of current practices and recent advancements in the diagnosis and treatment of renal cancer. It introduces updates in histological classification and explains the imaging characteristics of each tumour based on these changes. The review highlights state-of-the-art imaging modalities, including magnetic resonance imaging, computed tomography, positron emission tomography, and ultrasound, emphasising their crucial role in tumour characterisation and optimising treatment planning. Emerging technologies, such as radiomics and artificial intelligence, are also discussed for their transformative impact on enhancing diagnostic precision, prognostic prediction, and personalised patient management. Furthermore, the review explores current treatment options, including minimally invasive techniques such as cryoablation, radiofrequency ablation, and stereotactic body radiation therapy, as well as systemic therapies such as immune checkpoint inhibitors and targeted therapies.

Yang B, Li C, Fezzi S, Fan Z, Wei R, Chen Y, Tavella D, Ribichini FL, Zhang S, Sharif F, Tu S

pubmed logopapersAug 2 2025
Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos. Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training. We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods. We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.

Alenezi O, Bhattacharjee T, Alseed HA, Tosun YI, Chaudhry J, Prasad S

pubmed logopapersAug 2 2025
Previously, automated cropping and a reasonable classification accuracy for distinguishing impacted and non-impacted canines were demonstrated. This study evaluates multiple convolutional neural network (CNN) architectures for improving accuracy as a step towards a fully automated software for identification of impacted maxillary canines (IMCs) in panoramic radiographs (PRs). Eight CNNs (SqueezeNet, GoogLeNet, NASNet-Mobile, ShuffleNet, VGG-16, ResNet 50, DenseNet 201, and Inception V3) were compared in terms of their ability to classify 2 groups of PRs (impacted: n = 91; and non-impacted: n = 91 maxillary canines) before pre-processing and after applying automated cropping. For the PRs with impacted and non-impacted maxillary canines, GoogLeNet achieved the highest classification performance among the tested CNN architectures. Area under the curve (AUC) values of the Receiver Operating Characteristic (ROC) analysis without preprocessing and with preprocessing were 0.9 and 0.99 respectively, compared to 0.84 and 0.96 respectively with SqueezeNet. Among the tested CNN architectures, GoogLeNet achieved the highest performance on this dataset for the automated identification of impacted maxillary canines on both cropped and uncropped PRs.

Fatemeh Ziaeetabar

arxiv logopreprintAug 2 2025
Accurate and efficient brain tumor segmentation remains a critical challenge in neuroimaging due to the heterogeneous nature of tumor subregions and the high computational cost of volumetric inference. In this paper, we propose EfficientGFormer, a novel architecture that integrates pretrained foundation models with graph-based reasoning and lightweight efficiency mechanisms for robust 3D brain tumor segmentation. Our framework leverages nnFormer as a modality-aware encoder, transforming multi-modal MRI volumes into patch-level embeddings. These features are structured into a dual-edge graph that captures both spatial adjacency and semantic similarity. A pruned, edge-type-aware Graph Attention Network (GAT) enables efficient relational reasoning across tumor subregions, while a distillation module transfers knowledge from a full-capacity teacher to a compact student model for real-time deployment. Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time, outperforming recent transformer-based and graph-based baselines. This work offers a clinically viable solution for fast and accurate volumetric tumor delineation, combining scalability, interpretability, and generalization.

Graumann O, Cui Xin W, Goudie A, Blaivas M, Braden B, Campbell Westerway S, Chammas MC, Dong Y, Gilja OH, Hsieh PC, Jiang Tian A, Liang P, Möller K, Nolsøe CP, Săftoiu A, Dietrich CF

pubmed logopapersAug 2 2025
Artificial Intelligence (AI) is a theoretical framework and systematic development of computational models designed to execute tasks that traditionally require human cognition. In medical imaging, AI is used for various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and pathologies across multiple organ systems. However, integrating AI into medical ultrasound presents unique challenges compared to modalities like CT and MRI due to its operator-dependent nature and inherent variability in the image acquisition process. AI application to ultrasound holds the potential to mitigate multiple variabilities, recalibrate interpretative consistency, and uncover diagnostic patterns that may be difficult for humans to detect. Progress has led to significant innovation in medical ultrasound-based AI applications, facilitating their adoption in various clinical settings and for multiple diseases. This manuscript primarily aims to provide a concise yet comprehensive exploration of current and emerging AI applications in medical ultrasound within abdominal, musculoskeletal, and obstetric & gynecological and interventional medical ultrasound. The secondary aim is to discuss present limitations and potential challenges such technological implementations may encounter.

Lacoste-Collin L, Fabre M

pubmed logopapersAug 2 2025
Fine needle aspiration is a well-known procedure for the diagnosis and management of solid lesions. The approach to cystic lesions on fine needle-aspiration is becoming a popular diagnostic tool due to the increased availability of high-quality cross-sectional imaging such as computed tomography and ultrasound guided procedures like endoscopic ultrasound. Cystic lesions are closed cavities containing liquid, sometimes partially solid with various internal neoplastic and non-neoplastic components. The most frequently punctured cysts are in the neck (thyroid and salivary glands), mediastinum, breast and abdomen (pancreas and liver). The diagnostic accuracy of cytological cyst sampling is highly dependent on laboratory material management. This review highlights how to approach the main features of superficial and deep organ cysts using basic cytological techniques (direct smears, cytocentrifugation), liquid-based cytology and cell block. We show the role of a multimodal approach that can lead to a wider implementation of ancillary tests (biochemical, immunocytochemical and molecular) to improve diagnostic accuracy and clinical management of patients with cystic lesions. In the near future, artificial intelligence models will offer detection, classification and prediction capabilities for various cystic lesions. Two examples in pancreatic and thyroid cytopathology are particularly developed.

Neerav Nemchand Gala

arxiv logopreprintAug 2 2025
The use of Convolutional Neural Networks (CNNs) has greatly improved the interpretation of medical images. However, conventional CNNs typically demand extensive computational resources and large training datasets. To address these limitations, this study applied transfer learning to achieve strong classification performance using fewer training samples. Specifically, the study compared EfficientNetV2 with its predecessor, EfficientNet, and with ResNet50 in classifying brain tumors into three types: glioma, meningioma, and pituitary tumors. Results showed that EfficientNetV2 delivered superior performance compared to the other models. However, this improvement came at the cost of increased training time, likely due to the model's greater complexity.

Mohsen Abbaspour Onari, Lucie Charlotte Magister, Yaoxin Wu, Amalia Lupi, Dario Creazzo, Mattia Tordin, Luigi Di Donatantonio, Emilio Quaia, Chao Zhang, Isel Grau, Marco S. Nobile, Yingqian Zhang, Pietro Liò

arxiv logopreprintAug 2 2025
Distal myopathy represents a genetically heterogeneous group of skeletal muscle disorders with broad clinical manifestations, posing diagnostic challenges in radiology. To address this, we propose a novel multimodal attention-aware fusion architecture that combines features extracted from two distinct deep learning models, one capturing global contextual information and the other focusing on local details, representing complementary aspects of the input data. Uniquely, our approach integrates these features through an attention gate mechanism, enhancing both predictive performance and interpretability. Our method achieves a high classification accuracy on the BUSI benchmark and a proprietary distal myopathy dataset, while also generating clinically relevant saliency maps that support transparent decision-making in medical diagnosis. We rigorously evaluated interpretability through (1) functionally grounded metrics, coherence scoring against reference masks and incremental deletion analysis, and (2) application-grounded validation with seven expert radiologists. While our fusion strategy boosts predictive performance relative to single-stream and alternative fusion strategies, both quantitative and qualitative evaluations reveal persistent gaps in anatomical specificity and clinical usefulness of the interpretability. These findings highlight the need for richer, context-aware interpretability methods and human-in-the-loop feedback to meet clinicians' expectations in real-world diagnostic settings.

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.
Page 310 of 6626611 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.