Sort by:
Page 311 of 3903892 results

Estimating Total Lung Volume from Pixel-Level Thickness Maps of Chest Radiographs Using Deep Learning.

Dorosti T, Schultheiss M, Schmette P, Heuchert J, Thalhammer J, Gassert FT, Sellerer T, Schick R, Taphorn K, Mechlem K, Birnbacher L, Schaff F, Pfeiffer F, Pfeiffer D

pubmed logopapersMay 28 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Materials and Methods This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (<i>n</i> = 656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (<i>n</i> = 5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient <b>(r)</b>, and two-sided Student's t-distribution. Results The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates (MSEPublic-Synthetic = 0.16 L<sup>2</sup>, MSEKRI-Synthetic = 0.20 L<sup>2</sup>, MSEKRI-Real = 0.35 L<sup>2</sup>) and strong correlations with CT-derived reference standard TLV (nPublic-Synthetic = 1,191, r = 0.99, <i>P</i> < .001; nKRI-Synthetic = 72, r = 0.97, <i>P</i> < .001; nKRI-Real = 72, r = 0.91, <i>P</i> < .001). When evaluated on different datasets, the U-Net model achieved the highest performance for TLV estimation on the Luna16 test dataset, with the lowest mean squared error (MSE = 0.09 L<sup>2</sup>) and strongest correlation (<i>r</i> = 0.99, <i>P</i> <.001) compared with CT-derived TLV. Conclusion The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs. ©RSNA, 2025.

Contrast-Enhanced Ultrasound for Hepatocellular Carcinoma Diagnosis-<i>AJR</i> Expert Panel Narrative Review.

Li L, Burgio MD, Fetzer DT, Ferraioli G, Lyshchik A, Meloni MF, Rafailidis V, Sidhu PS, Vilgrain V, Wilson SR, Zhou J

pubmed logopapersMay 28 2025
Despite growing clinical use of contrast-enhanced ultrasound (CEUS), inconsistency remains in the modality's role in clinical pathways for hepatocellular carcinoma (HCC) diagnosis and management. This AJR Expert Panel Narrative Review provides practical insights on the use of CEUS for the diagnosis of HCC across populations, including individuals at high risk for HCC, individuals with metabolic dysfunction-associated steatotic liver disease, and remaining individuals not at high risk for HCC. Considerations addressed with respect to high-risk patients include CEUS diagnostic criteria for HCC, use of CEUS for differentiating HCC from non-HCC malignancy, use of CEUS for small (≤2 cm) lesions, use of CEUS for characterizing occult lesions on B-mode ultrasound, and use of CEUS for indeterminate lesions on CT or MRI. Representative literature addressing the use of CEUS for HCC diagnosis as well as gaps in knowledge requiring further investigation are highlighted. Throughout these discussions, the article distinguishes two broad types of ultrasound contrast agents used for liver imaging: pure blood-pool agents and a combined blood-pool and Kupffer-cell agent. Additional topics include the use of CEUS for treatment response assessment after nonradiation therapies and implications of artificial intelligence technologies. The article concludes with a series of consensus statements from the author panel.

Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method

Alanna Hazlett, Naomi Ohashi, Timothy Rodriguez, Sodiq Adewole

arxiv logopreprintMay 28 2025
In this work, we investigate the performance across multiple classification models to classify chest X-ray images into four categories of COVID-19, pneumonia, tuberculosis (TB), and normal cases. We leveraged transfer learning techniques with state-of-the-art pre-trained Convolutional Neural Networks (CNNs) models. We fine-tuned these pre-trained architectures on a labeled medical x-ray images. The initial results are promising with high accuracy and strong performance in key classification metrics such as precision, recall, and F1 score. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability to provide visual explanations for classification decisions, improving trust and transparency in clinical applications.

Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans

Yiheng Li, Francisco Carrillo-Perez, Mohammed Alawad, Olivier Gevaert

arxiv logopreprintMay 28 2025
Lung cancer is the leading cause of cancer mortality worldwide, and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes. Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning - on 3D lung nodule data from the Stanford Radiogenomics and Lung-CT-PT-Dx cohorts. In the task of KRAS and EGFR mutation detection, FMCIB+XGBoost consistently outperformed Dinov2+ABMIL, achieving accuracies of 0.846 and 0.883 for KRAS and EGFR mutations, respectively. In cancer staging, Dinov2+ABMIL demonstrated competitive generalization, achieving an accuracy of 0.797 for T-stage prediction in the Lung-CT-PT-Dx cohort, suggesting SSL's adaptability across diverse datasets. Our results emphasize the clinical utility of supervised models in mutation detection and highlight the potential of SSL to improve staging generalization, while identifying areas for enhancement in mutation sensitivity.

Deep Learning-Based BMD Estimation from Radiographs with Conformal Uncertainty Quantification

Long Hui, Wai Lok Yeung

arxiv logopreprintMay 28 2025
Limited DXA access hinders osteoporosis screening. This proof-of-concept study proposes using widely available knee X-rays for opportunistic Bone Mineral Density (BMD) estimation via deep learning, emphasizing robust uncertainty quantification essential for clinical use. An EfficientNet model was trained on the OAI dataset to predict BMD from bilateral knee radiographs. Two Test-Time Augmentation (TTA) methods were compared: traditional averaging and a multi-sample approach. Crucially, Split Conformal Prediction was implemented to provide statistically rigorous, patient-specific prediction intervals with guaranteed coverage. Results showed a Pearson correlation of 0.68 (traditional TTA). While traditional TTA yielded better point predictions, the multi-sample approach produced slightly tighter confidence intervals (90%, 95%, 99%) while maintaining coverage. The framework appropriately expressed higher uncertainty for challenging cases. Although anatomical mismatch between knee X-rays and standard DXA limits immediate clinical use, this method establishes a foundation for trustworthy AI-assisted BMD screening using routine radiographs, potentially improving early osteoporosis detection.

Cascaded 3D Diffusion Models for Whole-body 3D 18-F FDG PET/CT synthesis from Demographics

Siyeop Yoon, Sifan Song, Pengfei Jin, Matthew Tivnan, Yujin Oh, Sekeun Kim, Dufan Wu, Xiang Li, Quanzheng Li

arxiv logopreprintMay 28 2025
We propose a cascaded 3D diffusion model framework to synthesize high-fidelity 3D PET/CT volumes directly from demographic variables, addressing the growing need for realistic digital twins in oncologic imaging, virtual trials, and AI-driven data augmentation. Unlike deterministic phantoms, which rely on predefined anatomical and metabolic templates, our method employs a two-stage generative process. An initial score-based diffusion model synthesizes low-resolution PET/CT volumes from demographic variables alone, providing global anatomical structures and approximate metabolic activity. This is followed by a super-resolution residual diffusion model that refines spatial resolution. Our framework was trained on 18-F FDG PET/CT scans from the AutoPET dataset and evaluated using organ-wise volume and standardized uptake value (SUV) distributions, comparing synthetic and real data between demographic subgroups. The organ-wise comparison demonstrated strong concordance between synthetic and real images. In particular, most deviations in metabolic uptake values remained within 3-5% of the ground truth in subgroup analysis. These findings highlight the potential of cascaded 3D diffusion models to generate anatomically and metabolically accurate PET/CT images, offering a robust alternative to traditional phantoms and enabling scalable, population-informed synthetic imaging for clinical and research applications.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Distance Transform Guided Mixup for Alzheimer's Detection

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Alzheimer's detection efforts aim to develop accurate models for early disease diagnosis. Significant advances have been achieved with convolutional neural networks and vision transformer based approaches. However, medical datasets suffer heavily from class imbalance, variations in imaging protocols, and limited dataset diversity, which hinder model generalization. To overcome these challenges, this study focuses on single-domain generalization by extending the well-known mixup method. The key idea is to compute the distance transform of MRI scans, separate them spatially into multiple layers and then combine layers stemming from distinct samples to produce augmented images. The proposed approach generates diverse data while preserving the brain's structure. Experimental results show generalization performance improvement across both ADNI and AIBL datasets.

Look & Mark: Leveraging Radiologist Eye Fixations and Bounding boxes in Multimodal Large Language Models for Chest X-ray Report Generation

Yunsoo Kim, Jinge Wu, Su-Hwan Kim, Pardeep Vasudev, Jiashu Shen, Honghan Wu

arxiv logopreprintMay 28 2025
Recent advancements in multimodal Large Language Models (LLMs) have significantly enhanced the automation of medical image analysis, particularly in generating radiology reports from chest X-rays (CXR). However, these models still suffer from hallucinations and clinically significant errors, limiting their reliability in real-world applications. In this study, we propose Look & Mark (L&M), a novel grounding fixation strategy that integrates radiologist eye fixations (Look) and bounding box annotations (Mark) into the LLM prompting framework. Unlike conventional fine-tuning, L&M leverages in-context learning to achieve substantial performance gains without retraining. When evaluated across multiple domain-specific and general-purpose models, L&M demonstrates significant gains, including a 1.2% improvement in overall metrics (A.AVG) for CXR-LLaVA compared to baseline prompting and a remarkable 9.2% boost for LLaVA-Med. General-purpose models also benefit from L&M combined with in-context learning, with LLaVA-OV achieving an 87.3% clinical average performance (C.AVG)-the highest among all models, even surpassing those explicitly trained for CXR report generation. Expert evaluations further confirm that L&M reduces clinically significant errors (by 0.43 average errors per report), such as false predictions and omissions, enhancing both accuracy and reliability. These findings highlight L&M's potential as a scalable and efficient solution for AI-assisted radiology, paving the way for improved diagnostic workflows in low-resource clinical settings.
Page 311 of 3903892 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.