Sort by:
Page 28 of 46453 results

Quantitative computed tomography imaging classification of cement dust-exposed patients-based Kolmogorov-Arnold networks.

Chau NK, Kim WJ, Lee CH, Chae KJ, Jin GY, Choi S

pubmed logopapersMay 27 2025
Occupational health assessment is critical for detecting respiratory issues caused by harmful exposures, such as cement dust. Quantitative computed tomography (QCT) imaging provides detailed insights into lung structure and function, enhancing the diagnosis of lung diseases. However, its high dimensionality poses challenges for traditional machine learning methods. In this study, Kolmogorov-Arnold networks (KANs) were used for the binary classification of QCT imaging data to assess respiratory conditions associated with cement dust exposure. The dataset comprised QCT images from 609 individuals, including 311 subjects exposed to cement dust and 298 healthy controls. We derived 141 QCT-based variables and employed KANs with two hidden layers of 15 and 8 neurons. The network parameters, including grid intervals, polynomial order, learning rate, and penalty strengths, were carefully fine-tuned. The performance of the model was assessed through various metrics, including accuracy, precision, recall, F1 score, specificity, and the Matthews Correlation Coefficient (MCC). A five-fold cross-validation was employed to enhance the robustness of the evaluation. SHAP analysis was applied to interpret the sensitive QCT features. The KAN model demonstrated consistently high performance across all metrics, with an average accuracy of 98.03 %, precision of 97.35 %, recall of 98.70 %, F1 score of 98.01 %, and specificity of 97.40 %. The MCC value further confirmed the robustness of the model in managing imbalanced datasets. The comparative analysis demonstrated that the KAN model outperformed traditional methods and other deep learning approaches, such as TabPFN, ANN, FT-Transformer, VGG19, MobileNets, ResNet101, XGBoost, SVM, random forest, and decision tree. SHAP analysis highlighted structural and functional lung features, such as airway geometry, wall thickness, and lung volume, as key predictors. KANs significantly improved the classification of QCT imaging data, enhancing early detection of cement dust-induced respiratory conditions. SHAP analysis supported model interpretability, enhancing its potential for clinical translation in occupational health assessments.

Multi-instance Learning as Downstream Task of Self-Supervised Learning-based Pre-trained Model

Koki Matsuishi, Tsuyoshi Okita

arxiv logopreprintMay 27 2025
In deep multi-instance learning, the number of applicable instances depends on the data set. In histopathology images, deep learning multi-instance learners usually assume there are hundreds to thousands instances in a bag. However, when the number of instances in a bag increases to 256 in brain hematoma CT, learning becomes extremely difficult. In this paper, we address this drawback. To overcome this problem, we propose using a pre-trained model with self-supervised learning for the multi-instance learner as a downstream task. With this method, even when the original target task suffers from the spurious correlation problem, we show improvements of 5% to 13% in accuracy and 40% to 55% in the F1 measure for the hypodensity marker classification of brain hematoma CT.

China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer.

Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W

pubmed logopapersMay 27 2025
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.

Machine learning-driven imaging data for early prediction of lung toxicity in breast cancer radiotherapy.

Ungvári T, Szabó D, Győrfi A, Dankovics Z, Kiss B, Olajos J, Tőkési K

pubmed logopapersMay 27 2025
One possible adverse effect of breast irradiation is the development of pulmonary fibrosis. The aim of this study was to determine whether planning CT scans can predict which patients are more likely to develop lung lesions after treatment. A retrospective analysis of 242 patient records was performed using different machine learning models. These models showed a remarkable correlation between the occurrence of fibrosis and the hounsfield units of lungs in CT data. Three different classification methods (Tree, Kernel-based, k-Nearest Neighbors) showed predictive values above 60%. The human predictive factor (HPF), a mathematical predictive model, further strengthened the association between lung hounsfield unit (HU) metrics and radiation-induced lung injury (RILI). These approaches optimize radiation treatment plans to preserve lung health. Machine learning models and HPF can also provide effective diagnostic and therapeutic support for other diseases.

Development of a No-Reference CT Image Quality Assessment Method Using RadImageNet Pre-trained Deep Learning Models.

Ohashi K, Nagatani Y, Yamazaki A, Yoshigoe M, Iwai K, Uemura R, Shimomura M, Tanimura K, Ishida T

pubmed logopapersMay 27 2025
Accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic accuracy, optimizing imaging protocols, and preventing excessive radiation exposure. In clinical settings, where high-quality reference images are often unavailable, developing no-reference image quality assessment (NR-IQA) methods is essential. Recently, CT-NR-IQA methods using deep learning have been widely studied; however, significant challenges remain in handling multiple degradation factors and accurately reflecting real-world degradations. To address these issues, we propose a novel CT-NR-IQA method. Our approach utilizes a dataset that combines two degradation factors (noise and blur) to train convolutional neural network (CNN) models capable of handling multiple degradation factors. Additionally, we leveraged RadImageNet pre-trained models (ResNet50, DenseNet121, InceptionV3, and InceptionResNetV2), allowing the models to learn deep features from large-scale real clinical images, thus enhancing adaptability to real-world degradations without relying on artificially degraded images. The models' performances were evaluated by measuring the correlation between the subjective scores and predicted image quality scores for both artificially degraded and real clinical image datasets. The results demonstrated positive correlations between the subjective and predicted scores for both datasets. In particular, ResNet50 showed the best performance, with a correlation coefficient of 0.910 for the artificially degraded images and 0.831 for the real clinical images. These findings indicate that the proposed method could serve as a potential surrogate for subjective assessment in CT-NR-IQA.

Development of an Open-Source Algorithm for Automated Segmentation in Clinician-Led Paranasal Sinus Radiologic Research.

Darbari Kaul R, Zhong W, Liu S, Azemi G, Liang K, Zou E, Sacks PL, Thiel C, Campbell RG, Kalish L, Sacks R, Di Ieva A, Harvey RJ

pubmed logopapersMay 27 2025
Artificial Intelligence (AI) research needs to be clinician led; however, expertise typically lies outside their skill set. Collaborations exist but are often commercially driven. Free and open-source computational algorithms and software expertise are required for meaningful clinically driven AI medical research. Deep learning algorithms automate segmenting regions of interest for analysis and clinical translation. Numerous studies have automatically segmented paranasal sinus computed tomography (CT) scans; however, openly accessible algorithms capturing the sinonasal cavity remain scarce. The purpose of this study was to validate and provide an open-source segmentation algorithm for paranasal sinus CTs for the otolaryngology research community. A cross-sectional comparative study was conducted with a deep learning algorithm, UNet++, modified for automatic segmentation of paranasal sinuses CTs and "ground-truth" manual segmentations. A dataset of 100 paranasal sinuses scans was manually segmented, with an 80/20 training/testing split. The algorithm is available at https://github.com/rheadkaul/SinusSegment. Primary outcomes included the Dice similarity coefficient (DSC) score, Intersection over Union (IoU), Hausdorff distance (HD), sensitivity, specificity, and visual similarity grading. Twenty scans representing 7300 slices were assessed. The mean DSC was 0.87 and IoU 0.80, with HD 33.61 mm. The mean sensitivity was 83.98% and specificity 99.81%. The median visual similarity grading score was 3 (good). There were no statistically significant differences in outcomes with normal or diseased paranasal sinus CTs. Automatic segmentation of CT paranasal sinuses yields good results when compared with manual segmentation. This study provides an open-source segmentation algorithm as a foundation and gateway for more complex AI-based analysis of large datasets.

Dual-energy CT combined with histogram parameters in the assessment of perineural invasion in colorectal cancer.

Wang Y, Tan H, Li S, Long C, Zhou B, Wang Z, Cao Y

pubmed logopapersMay 27 2025
The purpose is to evaluate the predictive value of dual-energy CT (DECT) combined with histogram parameters and a clinical prediction model for perineural invasion (PNI) in colorectal cancer (CRC). We retrospectively analyzed clinical and imaging data from 173 CRC patients who underwent preoperative DECT-enhanced scanning at two centers. Data from Qinghai University Affiliated Hospital (n = 120) were randomly divided into training and validation sets, while data from Lanzhou University Second Hospital (n = 53) served as the external validation set. Regions of interest (ROIs) were delineated to extract spectral and histogram parameters, and multivariate logistic regression identified optimal predictors. Six machine learning models-support vector machine (SVM), decision tree (DT), random forest (RF), logistic regression (LR), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost)-were constructed. Model performance and clinical utility were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Four independent predictive factors were identified through multivariate analysis: entropy, CT40<sub>KeV</sub>, CEA, and skewness. Among the six classifier models, RF model demonstrated the best performance in the training set (AUC = 0.918, 95% CI: 0.862-0.969). In the validation set, RF outperformed other models (AUC = 0.885, 95% CI: 0.772-0.972). Notably, in the external validation set, the XGBoost model achieved the highest performance (AUC = 0.823, 95% CI: 0.672-0.945). Dual-energy CT-based combined with histogram parameters and clinical prediction modeling can be effectively used for preoperative noninvasive assessment of perineural invasion in colorectal cancer.

ToPoMesh: accurate 3D surface reconstruction from CT volumetric data via topology modification.

Chen J, Zhu Q, Xie B, Li T

pubmed logopapersMay 27 2025
Traditional computed tomography (CT) methods for 3D reconstruction face resolution limitations and require time-consuming post-processing workflows. While deep learning techniques improve the accuracy of segmentation, traditional voxel-based segmentation and surface reconstruction pipelines tend to introduce artifacts such as disconnected regions, topological inconsistencies, and stepped distortions. To overcome these challenges, we propose ToPoMesh, an end-to-end 3D mesh reconstruction deep learning framework for direct reconstruction of high-fidelity surface meshes from CT volume data. To address the existing problems, our approach introduces three core innovations: (1) accurate local and global shape modeling by preserving and enhancing local feature information through residual connectivity and self-attention mechanisms in graph convolutional networks; (2) an adaptive variant density (Avd) mesh de-pooling strategy, which dynamically optimizes the vertex distribution; (3) a topology modification module that iteratively prunes the error surfaces and boundary smoothing via variable regularity terms to obtain finer mesh surfaces. Experiments on the LiTS, MSD pancreas tumor, MSD hippocampus, and MSD spleen datasets demonstrate that ToPoMesh outperforms state-of-the-art methods. Quantitative evaluations demonstrate a 57.4% reduction in Chamfer distance (liver) and a 0.47% improvement in F-score compared to end-to-end 3D reconstruction methods, while qualitative results confirm enhanced fidelity for thin structures and complex anatomical topologies versus segmentation frameworks. Importantly, our method eliminates the need for manual post-processing, realizes the ability to reconstruct 3D meshes from images, and can provide precise guidance for surgical planning and diagnosis.

A Left Atrial Positioning System to Enable Follow-Up and Cohort Studies.

Mehringer NJ, McVeigh ER

pubmed logopapersMay 27 2025
We present a new algorithm to automatically convert 3-dimensional left atrium surface meshes into a standard 2-dimensional space: a Left Atrial Positioning System (LAPS). Forty-five contrast-enhanced 4- dimensional computed tomography datasets were collected from 30 subjects. The left atrium volume was segmented using a trained neural network and converted into a surface mesh. LAPS coordinates were calculated on each mesh by computing lines of longitude and latitude on the surface of the mesh with reference to the center of the posterior wall and the mitral valve. LAPS accuracy was evaluated with one-way transfer of coordinates from a template mesh to a synthetic ground truth, which was created by registering the template mesh and pre-calculated LAPS coordinates to a target mesh. The Euclidian distance error was measured between each test node and its ground truth location. The median point transfer error was 2.13 mm between follow-up scans of the same subject (n = 15) and 3.99 mm between different subjects (n = 30). The left atrium was divided into 24 anatomic regions and represented on a 2D square diagram. The Left Atrial Positioning System is fully automatic, accurate, robust to anatomic variation, and has flexible visualization for mapping data in the left atrium. This provides a framework for comparing regional LA surface data values in both follow-up and cohort studies.

Development and validation of a CT-based radiomics machine learning model for differentiating immune-related interstitial pneumonia.

Luo T, Guo J, Xi J, Luo X, Fu Z, Chen W, Huang D, Chen K, Xiao Q, Wei S, Wang Y, Du H, Liu L, Cai S, Dong H

pubmed logopapersMay 27 2025
Immune checkpoint inhibitor-related interstitial pneumonia (CIP) poses a diagnostic challenge due to its radiographic similarity to other pneumonias. We developed a non-invasive model using CT imaging to differentiate CIP from other pneumonias (OTP). We analyzed CIP and OTP patients after the immunotherapy from five medical centers between 2020 and 2023, and randomly divided into training and validation in 7:3. A radiomics model was developed using random forest analysis. A new model was then built by combining independent risk factors for CIP. The models were evaluated using ROC, calibration, and decision curve analysis. A total of 238 patients with pneumonia following immunotherapy were included, with 116 CIP and 122 OTP. After random allocation, the training cohort included 166 patients, and the validation included 72 patients. A radiomics model composed of 11 radiomic features was established using the random forest method, with an AUC of 0.833 for the training cohort and 0.821 for the validation. Univariate and multivariate logistic regression analysis revealed significant differences in smoking history, radiotherapy history, and radiomics score between CIP and OTP (p < 0.05). A new model was constructed based on these three factors and a nomogram was drawn. This model showed good calibration and net benefit in both the training and validation cohorts, with AUCs of 0.872 and 0.860, respectively. Using the random forest method of machine learning, we successfully constructed a CT-based radiomics CIP differential diagnostic model that can accurately, non-invasively, and rapidly provide clinicians with etiological support for pneumonia diagnosis.
Page 28 of 46453 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.