Sort by:
Page 254 of 4064055 results

A Privacy-Preserving Federated Learning Framework for Generalizable CBCT to Synthetic CT Translation in Head and Neck

Ciro Benito Raggio, Paolo Zaffino, Maria Francesca Spadea

arxiv logopreprintJun 10 2025
Shortened Abstract Cone-beam computed tomography (CBCT) has become a widely adopted modality for image-guided radiotherapy (IGRT). However, CBCT suffers from increased noise, limited soft-tissue contrast, and artifacts, resulting in unreliable Hounsfield unit values and hindering direct dose calculation. Synthetic CT (sCT) generation from CBCT addresses these issues, especially using deep learning (DL) methods. Existing approaches are limited by institutional heterogeneity, scanner-dependent variations, and data privacy regulations that prevent multi-center data sharing. To overcome these challenges, we propose a cross-silo horizontal federated learning (FL) approach for CBCT-to-sCT synthesis in the head and neck region, extending our FedSynthCT framework. A conditional generative adversarial network was collaboratively trained on data from three European medical centers in the public SynthRAD2025 challenge dataset. The federated model demonstrated effective generalization across centers, with mean absolute error (MAE) ranging from $64.38\pm13.63$ to $85.90\pm7.10$ HU, structural similarity index (SSIM) from $0.882\pm0.022$ to $0.922\pm0.039$, and peak signal-to-noise ratio (PSNR) from $32.86\pm0.94$ to $34.91\pm1.04$ dB. Notably, on an external validation dataset of 60 patients, comparable performance was achieved (MAE: $75.22\pm11.81$ HU, SSIM: $0.904\pm0.034$, PSNR: $33.52\pm2.06$ dB) without additional training, confirming robust generalization despite protocol, scanner differences and registration errors. These findings demonstrate the technical feasibility of FL for CBCT-to-sCT synthesis while preserving data privacy and offer a collaborative solution for developing generalizable models across institutions without centralized data sharing or site-specific fine-tuning.

DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View

Donglian Li, Hui Guo, Minglang Chen, Huizhen Chen, Jialing Chen, Bocheng Liang, Pengchen Liang, Ying Tan

arxiv logopreprintJun 10 2025
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.

MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding

Shivang Chopra, Lingchao Mao, Gabriela Sanchez-Rodriguez, Andrew J Feola, Jing Li, Zsolt Kira

arxiv logopreprintJun 10 2025
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.

MAMBO: High-Resolution Generative Approach for Mammography Images

Milica Škipina, Nikola Jovišić, Nicola Dall'Asen, Vanja Švenda, Anil Osman Tur, Slobodan Ilić, Elisa Ricci, Dubravko Ćulibrk

arxiv logopreprintJun 10 2025
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.

Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification

Rinat Prochii, Elizaveta Dakhova, Pavel Birulin, Maxim Sharaev

arxiv logopreprintJun 10 2025
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.

Multivariate brain morphological patterns across mood disorders: key roles of frontotemporal and cerebellar areas.

Kandilarova S, Maggioni E, Squarcina L, Najar D, Homadi M, Tassi E, Stoyanov D, Brambilla P

pubmed logopapersJun 10 2025
Differentiating major depressive disorder (MDD) from bipolar disorder (BD) remains a significant clinical challenge, as both disorders exhibit overlapping symptoms but require distinct treatment approaches. Advances in voxel-based morphometry and surface-based morphometry have facilitated the identification of structural brain abnormalities that may serve as diagnostic biomarkers. This study aimed to explore the relationships between brain morphological features, such as grey matter volume (GMV) and cortical thickness (CT), and demographic and clinical variables in patients with MDD and BD and healthy controls (HC) using multivariate analysis methods. A total of 263 participants, including 120 HC, 95 patients with MDD and 48 patients with BD, underwent T1-weighted MRI. GMV and CT were computed for standardised brain regions, followed by multivariate partial least squares (PLS) regression to assess associations with demographic and diagnostic variables. Reductions in frontotemporal CT were observed in MDD and BD compared with HC, but distinct trends between BD and MDD were also detected for the CT of selective temporal, frontal and parietal regions. Differential patterns in cerebellar GMV were also identified, with lobule CI larger in MDD and lobule CII larger in BD. Additionally, BD showed the same trend as ageing concerning reductions in CT and posterior cerebellar and striatal GMV. Depression severity showed a transdiagnostic link with reduced frontotemporal CT. This study highlights shared and distinct structural brain alterations in MDD and BD, emphasising the potential of neuroimaging biomarkers to enhance diagnostic accuracy. Accelerated cortical thinning and differential cerebellar changes in BD may serve as targets for future research and clinical interventions. Our findings underscore the value of objective neuroimaging markers in increasing the precision of mood disorder diagnoses, improving treatment outcomes.

Preoperative prediction model for benign and malignant gallbladder polyps on the basis of machine-learning algorithms.

Zeng J, Hu W, Wang Y, Jiang Y, Peng J, Li J, Liu X, Zhang X, Tan B, Zhao D, Li K, Zhang S, Cao J, Qu C

pubmed logopapersJun 10 2025
This study aimed to differentiate between benign and malignant gallbladder polyps preoperatively by developing a prediction model integrating preoperative transabdominal ultrasound and clinical features using machine-learning algorithms. A retrospective analysis was conducted on clinical and ultrasound data from 1,050 patients at 2 centers who underwent cholecystectomy for gallbladder polyps. Six machine-learning algorithms were used to develop preoperative models for predicting benign and malignant gallbladder polyps. Internal and external test cohorts evaluated model performance. The Shapley Additive Explanations algorithm was used to understand feature importance. The main study cohort included 660 patients with benign polyps and 285 patients with malignant polyps, randomly divided into a 3:1 stratified training and internal test cohorts. The external test cohorts consisted of 73 benign and 32 malignant polyps. In the training cohort, the Shapley Additive Explanations algorithm, on the basis of variables selected by Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression, further identified 6 key predictive factors: polyp size, age, fibrinogen, carbohydrate antigen 19-9, presence of stones, and cholinesterase. Using these factors, 6 predictive models were developed. The random forest model outperformed others, with an area under the curve of 0.963, 0.940, and 0.958 in the training, internal, and external test cohorts, respectively. Compared with previous studies, the random forest model demonstrated excellent clinical utility and predictive performance. In addition, the Shapley Additive Explanations algorithm was used to visualize feature importance, and an online calculation platform was developed. The random forest model, combining preoperative ultrasound and clinical features, accurately predicts benign and malignant gallbladder polyps, offering valuable guidance for clinical decision-making.

U<sub>2</sub>-Attention-Net: a deep learning automatic delineation model for parotid glands in head and neck cancer organs at risk on radiotherapy localization computed tomography images.

Wen X, Wang Y, Zhang D, Xiu Y, Sun L, Zhao B, Liu T, Zhang X, Fan J, Xu J, An T, Li W, Yang Y, Xing D

pubmed logopapersJun 10 2025
This study aimed to develop a novel deep learning model, U<sub>2</sub>-Attention-Net (U<sub>2</sub>A-Net), for precise segmentation of parotid glands on radiotherapy localization CT images. CT images from 79 patients with head and neck cancer were selected, on which the label maps were delineated by relevant practitioners to construct a dataset. The dataset was divided into the training set (n = 60), validation set (n = 6), and test set (n = 13), with the training set augmented. U<sub>2</sub>A-Net, divided into U<sub>2</sub>A-Net V<sub>1</sub> (sSE) and U<sub>2</sub>A-Net V<sub>2</sub> (cSE) based on different attention mechanisms, was evaluated for parotid gland segmentation based on the DL loss function with U-Net, Attention U-Net, DeepLabV3+, and TransUNet as comparision models. Segmentation was also performed using GDL and GD-BCEL loss functions. Model performance was evaluated using DSC, JSC, PPV, SE, HD, RVD, and VOE metrics. The quantitative results revealed that U<sub>2</sub>A-Net based on DL outperformed the comparative models. While U<sub>2</sub>A-Net V<sub>1</sub> had the highest PPV, U<sub>2</sub>A-Net V<sub>2</sub> demonstrated the best quantitative results in other metrics. Qualitative results showed that U<sub>2</sub>A-Net's segmentation closely matched expert delineations, reducing oversegmentation and undersegmentation, with U<sub>2</sub>A-Net V<sub>2</sub> being more effective. In comparing loss functions, U<sub>2</sub>A-Net V<sub>1</sub> using GD-BCEL and U<sub>2</sub>A-Net V<sub>2</sub> using DL performed best. The U<sub>2</sub>A-Net model significantly improved parotid gland segmentation on radiotherapy localization CT images. The cSE attention mechanism showed advantages with DL, while sSE performed better with GD-BCEL.

Empirical evaluation of artificial intelligence distillation techniques for ascertaining cancer outcomes from electronic health records.

Riaz IB, Naqvi SAA, Ashraf N, Harris GJ, Kehl KL

pubmed logopapersJun 10 2025
Phenotypic information for cancer research is embedded in unstructured electronic health records (EHR), requiring effort to extract. Deep learning models can automate this but face scalability issues due to privacy concerns. We evaluated techniques for applying a teacher-student framework to extract longitudinal clinical outcomes from EHRs. We focused on the challenging task of ascertaining two cancer outcomes-overall response and progression according to Response Evaluation Criteria in Solid Tumors (RECIST)-from free-text radiology reports. Teacher models with hierarchical Transformer architecture were trained on data from Dana-Farber Cancer Institute (DFCI). These models labeled public datasets (MIMIC-IV, Wiki-text) and GPT-4-generated synthetic data. "Student" models were then trained to mimic the teachers' predictions. DFCI "teacher" models achieved high performance, and student models trained on MIMIC-IV data showed comparable results, demonstrating effective knowledge transfer. However, student models trained on Wiki-text and synthetic data performed worse, emphasizing the need for in-domain public datasets for model distillation.

Uncertainty estimation for trust attribution to speed-of-sound reconstruction with variational networks.

Laguna S, Zhang L, Bezek CD, Farkas M, Schweizer D, Kubik-Huch RA, Goksel O

pubmed logopapersJun 10 2025
Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with variational networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty-based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS 4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty-based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
Page 254 of 4064055 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.