Sort by:
Page 255 of 4064055 results

Automated Diffusion Analysis for Non-Invasive Prediction of IDH Genotype in WHO Grade 2-3 Gliomas.

Wu J, Thust SC, Wastling SJ, Abdalla G, Benenati M, Maynard JA, Brandner S, Carrasco FP, Barkhof F

pubmed logopapersJun 10 2025
Glioma molecular characterization is essential for risk stratification and treatment planning. Noninvasive imaging biomarkers such as apparent diffusion coefficient (ADC) values have shown potential for predicting glioma genotypes. However, manual segmentation of gliomas is time-consuming and operator-dependent. To address this limitation, we aimed to establish a single-sequence-derived automatic ADC extraction pipeline using T2-weighted imaging to support glioma isocitrate dehydrogenase (IDH) genotyping. Glioma volumes from a hospital data set (University College London Hospitals; n=247) were manually segmented on T2-weighted MRI scans using ITK-Snap Toolbox and co-registered to ADC maps sequences using the FMRIB Linear Image Registration Tool in FSL, followed by ADC histogram extraction (Python). Separately, a nnUNet deep learning algorithm was trained to segment glioma volumes using T2w only from BraTS 2021 data (n=500, 80% training, 5% validation and 15% test split). nnUnet was then applied to the University College London Hospitals (UCLH) data for segmentation and ADC read-outs. Univariable logistic regression was used to test the performance manual and nnUNet derived ADC metrics for IDH status prediction. Statistical equivalence was tested (paired two-sided t-test). nnUnet segmentation achieved a median Dice of 0.85 on BraTS data, and 0.83 on UCLH data. For the best performing metric (rADCmean) the area under the receiver operating characteristic curve (AUC) for differentiating IDH-mutant from IDHwildtype gliomas was 0.82 (95% CI: 0.78-0.88), compared to the manual segmentation AUC 0.84 (95% CI: 0.77-0.89). For all ADC metrics, manually and nnUNet extracted ADC were statistically equivalent (p<0.01). nnUNet identified one area of glioma infiltration missed by human observers. In 0.8% gliomas, nnUnet missed glioma components. In 6% of cases, over-segmentation of brain remote from the tumor occurred (e.g. temporal poles). The T2w trained nnUnet algorithm achieved ADC readouts for IDH genotyping with a performance statistically equivalent to human observers. This approach could support rapid ADC based identification of glioblastoma at an early disease stage, even with limited input data. AUC = Area under the receiver operating characteristic curve, BraTS = The brain tumor segmentation challenge held by MICCAI, Dice = Dice Similarity Coefficient, IDH = Isocitrate dehydrogenase, mGBM = Molecular glioblastoma, ADCmin = Fifth ADC histogram percentile, ADCmean = Mean ADC value, ADCNAWM = ADC in the contralateral centrum semiovale normal white matter, rADCmin = Normalized ADCmin, VOI rADCmean = Normalized ADCmean.

PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies

Mojtaba Nafez, Amirhossein Koochakian, Arad Maleki, Jafar Habibi, Mohammad Hossein Rohban

arxiv logopreprintJun 10 2025
Anomaly Detection (AD) and Anomaly Localization (AL) are crucial in fields that demand high reliability, such as medical imaging and industrial monitoring. However, current AD and AL approaches are often susceptible to adversarial attacks due to limitations in training data, which typically include only normal, unlabeled samples. This study introduces PatchGuard, an adversarially robust AD and AL method that incorporates pseudo anomalies with localization masks within a Vision Transformer (ViT)-based architecture to address these vulnerabilities. We begin by examining the essential properties of pseudo anomalies, and follow it by providing theoretical insights into the attention mechanisms required to enhance the adversarial robustness of AD and AL systems. We then present our approach, which leverages Foreground-Aware Pseudo-Anomalies to overcome the deficiencies of previous anomaly-aware methods. Our method incorporates these crafted pseudo-anomaly samples into a ViT-based framework, with adversarial training guided by a novel loss function designed to improve model robustness, as supported by our theoretical analysis. Experimental results on well-established industrial and medical datasets demonstrate that PatchGuard significantly outperforms previous methods in adversarial settings, achieving performance gains of $53.2\%$ in AD and $68.5\%$ in AL, while also maintaining competitive accuracy in non-adversarial settings. The code repository is available at https://github.com/rohban-lab/PatchGuard .

The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset

Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott

arxiv logopreprintJun 10 2025
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.

An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation

Rajan Das Gupta, Md Imrul Hasan Showmick, Mushfiqur Rahman Abir, Shanjida Akter, Md. Yeasin Rahat, Md. Jakir Hossen

arxiv logopreprintJun 10 2025
Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.

Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces

Dieuwertje Alblas, Patryk Rygiel, Julian Suk, Kaj O. Kappe, Marieke Hofman, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJun 10 2025
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.

Foundation Models in Medical Imaging -- A Review and Outlook

Vivien van Veldhuizen, Vanessa Botha, Chunyao Lu, Melis Erdal Cesur, Kevin Groot Lipman, Edwin D. de Jong, Hugo Horlings, Clárisa Sanchez, Cees Snoek, Ritse Mann, Eric Marcus, Jonas Teuwen

arxiv logopreprintJun 10 2025
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.

MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding

Shivang Chopra, Gabriela Sanchez-Rodriguez, Lingchao Mao, Andrew J Feola, Jing Li, Zsolt Kira

arxiv logopreprintJun 10 2025
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.

Challenges and Advances in Classifying Brain Tumors: An Overview of Machine, Deep Learning, and Hybrid Approaches with Future Perspectives in Medical Imaging.

Alshomrani F

pubmed logopapersJun 10 2025
Accurate brain tumor classification is essential in neuro-oncology, as it directly informs treatment strategies and influences patient outcomes. This review comprehensively explores machine learning (ML) and deep learning (DL) models that enhance the accuracy and efficiency of brain tumor classification using medical imaging data, particularly Magnetic Resonance Imaging (MRI). As a noninvasive imaging technique, MRI plays a central role in detecting, segmenting, and characterizing brain tumors by providing detailed anatomical views that help distinguish various tumor types, including gliomas, meningiomas, and metastatic brain lesions. The review presents a detailed analysis of diverse ML approaches, from classical algorithms such as Support Vector Machines (SVM) and Decision Trees to advanced DL models, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and hybrid architectures that combine multiple techniques for improved performance. Through comparative analysis of recent studies across various datasets, the review evaluates these methods using metrics such as accuracy, sensitivity, specificity, and AUC-ROC, offering insights into their effectiveness and limitations. Significant challenges in the field are examined, including the scarcity of annotated datasets, computational complexity requirements, model interpretability issues, and barriers to clinical integration. The review proposes future directions to address these challenges, highlighting the potential of multi-modal imaging that combines MRI with other imaging modalities, explainable AI frameworks for enhanced model transparency, and privacy-preserving techniques for securing sensitive patient data. This comprehensive analysis demonstrates the transformative potential of ML and DL in advancing brain tumor diagnosis while emphasizing the necessity for continued research and innovation to overcome current limitations and ensure successful clinical implementation for improved patient care.

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1- year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study.

Niu X, Li Y, Wang L, Xu G

pubmed logopapersJun 10 2025
It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer-Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.
Page 255 of 4064055 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.