Sort by:
Page 214 of 2352341 results

An overview of artificial intelligence and machine learning in shoulder surgery.

Cho SH, Kim YS

pubmed logopapersMay 19 2025
Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinical practice, particularly in shoulder arthroplasty and rotator cuff tears (RCTs) management. This review explores the fundamental paradigms of ML, including supervised, unsupervised, and reinforcement learning, alongside key algorithms such as XGBoost, neural networks, and generative adversarial networks. In shoulder arthroplasty, ML accurately predicts postoperative outcomes, complications, and implant selection, facilitating personalized surgical planning and cost optimization. Predictive models, including ensemble learning methods, achieve over 90% accuracy in forecasting complications, while neural networks enhance surgical precision through AI-assisted navigation. In RCTs treatment, ML enhances diagnostic accuracy using deep learning models on magnetic resonance imaging and ultrasound, achieving area under the curve values exceeding 0.90. ML models also predict tear reparability with 85% accuracy and postoperative functional outcomes, including range of motion and patient-reported outcomes. Despite remarkable advancements, challenges such as data variability, model interpretability, and integration into clinical workflows persist. Future directions involve federated learning for robust model generalization and explainable AI to enhance transparency. ML continues to revolutionize orthopedic care by providing data-driven, personalized treatment strategies and optimizing surgical outcomes.

Longitudinal Validation of a Deep Learning Index for Aortic Stenosis Progression

Park, J., Kim, J., Yoon, Y. E., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J., Park, J.-H.

medrxiv logopreprintMay 19 2025
AimsAortic stenosis (AS) is a progressive disease requiring timely monitoring and intervention. While transthoracic echocardiography (TTE) remains the diagnostic standard, deep learning (DL)-based approaches offer potential for improved disease tracking. This study examined the longitudinal changes in a previously developed DL-derived index for AS continuum (DLi-ASc) and assessed its value in predicting progression to severe AS. Methods and ResultsWe retrospectively analysed 2,373 patients a(7,371 TTEs) from two tertiary hospitals. DLi-ASc (scaled 0-100), derived from parasternal long- and/or short-axis views, was tracked longitudinally. DLi-ASc increased in parallel with worsening AS stages (p for trend <0.001) and showed strong correlations with AV maximal velocity (Vmax) (Pearson correlation coefficients [PCC] = 0.69, p<0.001) and mean pressure gradient (mPG) (PCC = 0.66, p<0.001). Higher baseline DLi-ASc was associated with a faster AS progression rate (p for trend <0.001). Additionally, the annualised change in DLi-ASc, estimated using linear mixed-effect models, correlated strongly with the annualised progression of AV Vmax (PCC = 0.71, p<0.001) and mPG (PCC = 0.68, p<0.001). In Fine-Gray competing risk models, baseline DLi-ASc independently predicted progression to severe AS, even after adjustment for AV Vmax or mPG (hazard ratio per 10-point increase = 2.38 and 2.80, respectively) ConclusionDLi-ASc increased in parallel with AS progression and independently predicted severe AS progression. These findings support its role as a non-invasive imaging-based digital marker for longitudinal AS monitoring and risk stratification.

Deep learning feature-based model for predicting lymphovascular invasion in urothelial carcinoma of bladder using CT images.

Xiao B, Lv Y, Peng C, Wei Z, Xv Q, Lv F, Jiang Q, Liu H, Li F, Xv Y, He Q, Xiao M

pubmed logopapersMay 18 2025
Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images. Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy. The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.

ChatGPT-4-Driven Liver Ultrasound Radiomics Analysis: Advantages and Drawbacks Compared to Traditional Techniques.

Sultan L, Venkatakrishna SSB, Anupindi S, Andronikou S, Acord M, Otero H, Darge K, Sehgal C, Holmes J

pubmed logopapersMay 18 2025
Artificial intelligence (AI) is transforming medical imaging, with large language models such as ChatGPT-4 emerging as potential tools for automated image interpretation. While AI-driven radiomics has shown promise in diagnostic imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined. This study evaluates the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to differentiate fibrosis, steatosis, and normal liver tissue, compared to conventional image analysis software. Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver (n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared to those obtained using Interactive Data Language (IDL), a traditional image analysis software. One-way ANOVA was used to identify statistically significant features differentiating liver conditions, and logistic regression models were employed to assess diagnostic performance. ChatGPT-4 extracted nine key textural features-echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity, dissimilarity, angular second moment, and entropy-all of which significantly differed across liver conditions (p < 0.05). Among individual features, echo intensity achieved the highest F1-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and 83% sensitivity in classifying liver disease. ROC analysis demonstrated strong discriminatory performance, with AUC values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared to Interactive Data Language (IDL) image analysis software, ChatGPT-4 exhibited slightly lower sensitivity (0.83 vs. 0.89) but showed moderate correlation (R = 0.68, p < 0.0001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing analysis time by 40%, highlighting its potential for high throughput radiomic analysis. Despite slightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics, offering faster processing, high-throughput analysis, and automated multi-image evaluation. These findings support its potential integration into AI-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic accuracy.

MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks

Yinghao Zhu, Ziyi He, Haoran Hu, Xiaochen Zheng, Xichen Zhang, Zixiang Wang, Junyi Gao, Liantao Ma, Lequan Yu

arxiv logopreprintMay 18 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.

Harnessing Artificial Intelligence for Accurate Diagnosis and Radiomics Analysis of Combined Pulmonary Fibrosis and Emphysema: Insights from a Multicenter Cohort Study

Zhang, S., Wang, H., Tang, H., Li, X., Wu, N.-W., Lang, Q., Li, B., Zhu, H., Chen, X., Chen, K., Xie, B., Zhou, A., Mo, C.

medrxiv logopreprintMay 18 2025
Combined Pulmonary Fibrosis and Emphysema (CPFE), formally recognized as a distinct pulmonary syndrome in 2022, is characterized by unique clinical features and pathogenesis that may lead to respiratory failure and death. However, the diagnosis of CPFE presents significant challenges that hinder effective treatment. Here, we assembled three-dimensional (3D) reconstruction data of the chest High-Resolution Computed Tomography (HRCT) of patients from multiple hospitals across different provinces in China, including Xiangya Hospital, West China Hospital, and Fujian Provincial Hospital. Using this dataset, we developed CPFENet, a deep learning-based diagnostic model for CPFE. It accurately differentiates CPFE from COPD, with performance comparable to that of professional radiologists. Additionally, we developed a CPFE score based on radiomic analysis of 3D CT images to quantify disease characteristics. Notably, female patients demonstrated significantly higher CPFE scores than males, suggesting potential sex-specific differences in CPFE. Overall, our study establishes the first diagnostic framework for CPFE, providing a diagnostic model and clinical indicators that enable accurate classification and characterization of the syndrome.

Computational modeling of breast tissue mechanics and machine learning in cancer diagnostics: enhancing precision in risk prediction and therapeutic strategies.

Ashi L, Taurin S

pubmed logopapersMay 17 2025
Breast cancer remains a significant global health issue. Despite advances in detection and treatment, its complexity is driven by genetic, environmental, and structural factors. Computational methods like Finite Element Modeling (FEM) have transformed our understanding of breast cancer risk and progression. Advanced computational approaches in breast cancer research are the focus, with an emphasis on FEM's role in simulating breast tissue mechanics and enhancing precision in therapies such as radiofrequency ablation (RFA). Machine learning (ML), particularly Convolutional Neural Networks (CNNs), has revolutionized imaging modalities like mammograms and MRIs, improving diagnostic accuracy and early detection. AI applications in analyzing histopathological images have advanced tumor classification and grading, offering consistency and reducing inter-observer variability. Explainability tools like Grad-CAM, SHAP, and LIME enhance the transparency of AI-driven models, facilitating their integration into clinical workflows. Integrating FEM and ML represents a paradigm shift in breast cancer management. FEM offers precise modeling of tissue mechanics, while ML excels in predictive analytics and image analysis. Despite challenges such as data variability and limited standardization, synergizing these approaches promises adaptive, personalized care. These computational methods have the potential to redefine diagnostics, optimize treatment, and improve patient outcomes.

Prediction of cervical spondylotic myelopathy from a plain radiograph using deep learning with convolutional neural networks.

Tachi H, Kokabu T, Suzuki H, Ishikawa Y, Yabu A, Yanagihashi Y, Hyakumachi T, Shimizu T, Endo T, Ohnishi T, Ukeba D, Sudo H, Yamada K, Iwasaki N

pubmed logopapersMay 17 2025
This study aimed to develop deep learning algorithms (DLAs) utilising convolutional neural networks (CNNs) to classify cervical spondylotic myelopathy (CSM) and cervical spondylotic radiculopathy (CSR) from plain cervical spine radiographs. Data from 300 patients (150 with CSM and 150 with CSR) were used for internal validation (IV) using five-fold cross-validation strategy. Additionally, 100 patients (50 with CSM and 50 with CSR) were included in the external validation (EV). Two DLAs were trained using CNNs on plain radiographs from C3-C6 for the binary classification of CSM and CSR, and for the prediction of the spinal canal area rate using magnetic resonance imaging. Model performance was evaluated on external data using metrics such as area under the curve (AUC), accuracy, and likelihood ratios. For the binary classification, the AUC ranged from 0.84 to 0.96, with accuracy between 78% and 95% during IV. In the EV, the AUC and accuracy were 0.96 and 90%, respectively. For the spinal canal area rate, correlation coefficients during five-fold cross-validation ranged from 0.57 to 0.64, with a mean correlation of 0.61 observed in the EV. DLAs developed with CNNs demonstrated promising accuracy for classifying CSM and CSR from plain radiographs. These algorithms have the potential to assist non-specialists in identifying patients who require further evaluation or referral to spine specialists, thereby reducing delays in the diagnosis and treatment of CSM.

Feasibility of improving vocal fold pathology image classification with synthetic images generated by DDPM-based GenAI: a pilot study.

Khazrak I, Zainaee S, M Rezaee M, Ghasemi M, C Green R

pubmed logopapersMay 17 2025
Voice disorders (VD) are often linked to vocal fold structural pathologies (VFSP). Laryngeal imaging plays a vital role in assessing VFSPs and VD in clinical and research settings, but challenges like scarce and imbalanced datasets can limit the generalizability of findings. Denoising Diffusion Probabilistic Models (DDPMs), a subtype of Generative AI, has gained attention for its ability to generate high-quality and realistic synthetic images to address these challenges. This study explores the feasibility of improving VFSP image classification by generating synthetic images using DDPMs. 404 laryngoscopic images depicting VF without and with VFSP were included. DDPMs were used to generate synthetic images to augment the original dataset. Two convolutional neural network architectures, VGG16 and ResNet50, were applied for model training. The models were initially trained only on the original dataset. Then, they were trained on the augmented datasets. Evaluation metrics were analyzed to assess the performance of the models for both binary classification (with/without VFSPs) and multi-class classification (seven specific VFSPs). Realistic and high-quality synthetic images were generated for dataset augmentation. The model first failed to converge when trained only on the original dataset, but they successfully converged and achieved low loss and high accuracy when trained on the augmented datasets. The best performance was gained for both binary and multi-class classification when the models were trained on an augmented dataset. Generating realistic images of VFSP using DDPMs is feasible and can enhance the classification of VFSPs by an AI model and may support VD screening and diagnosis.

MRI-based radiomics for differentiating high-grade from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis.

Broomand Lomer N, Ghasemi A, Ahmadzadeh AM, A Torigian D

pubmed logopapersMay 17 2025
High-grade clear cell renal cell carcinoma (ccRCC) is linked to lower survival rates and more aggressive disease progression. This study aims to assess the diagnostic performance of MRI-derived radiomics as a non-invasive approach for pre-operative differentiation of high-grade from low-grade ccRCC. A systematic search was conducted across PubMed, Scopus, and Embase. Quality assessment was performed using QUADAS-2 and METRICS. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were estimated using a bivariate model. Separate meta-analyses were conducted for radiomics models and combined models, where the latter integrated clinical and radiological features with radiomics. Subgroup analysis was performed to identify potential sources of heterogeneity. Sensitivity analysis was conducted to identify potential outliers. A total of 15 studies comprising 2,265 patients were included, with seven and six studies contributing to the meta-analysis of radiomics and combined models, respectively. The pooled estimates of the radiomics model were as follows: sensitivity, 0.78; specificity, 0.84; PLR, 4.17; NLR, 0.28; DOR, 17.34; and AUC, 0.84. For the combined model, the pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.87, 0.81, 3.78, 0.21, 28.57, and 0.90, respectively. Radiomics models trained on smaller cohorts exhibited a significantly higher pooled specificity and PLR than those trained on larger cohorts. Also, radiomics models based on single-user segmentation demonstrated a significantly higher pooled specificity compared to multi-user segmentation. Radiomics has demonstrated potential as a non-invasive tool for grading ccRCC, with combined models achieving superior performance.
Page 214 of 2352341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.