Prediction of cervical spondylotic myelopathy from a plain radiograph using deep learning with convolutional neural networks.
Authors
Affiliations (5)
Affiliations (5)
- Hokkaido University, Sapporo, Japan.
- Department of Orthopaedic Surgery, Eniwa Hospital, Hokkaido, Japan.
- Hokkaido University, Sapporo, Japan. [email protected].
- Department of Orthopaedic Surgery, Eniwa Hospital, Hokkaido, Japan. [email protected].
- Hokkaido University, Sapporo, Japan. [email protected].
Abstract
This study aimed to develop deep learning algorithms (DLAs) utilising convolutional neural networks (CNNs) to classify cervical spondylotic myelopathy (CSM) and cervical spondylotic radiculopathy (CSR) from plain cervical spine radiographs. Data from 300 patients (150 with CSM and 150 with CSR) were used for internal validation (IV) using five-fold cross-validation strategy. Additionally, 100 patients (50 with CSM and 50 with CSR) were included in the external validation (EV). Two DLAs were trained using CNNs on plain radiographs from C3-C6 for the binary classification of CSM and CSR, and for the prediction of the spinal canal area rate using magnetic resonance imaging. Model performance was evaluated on external data using metrics such as area under the curve (AUC), accuracy, and likelihood ratios. For the binary classification, the AUC ranged from 0.84 to 0.96, with accuracy between 78% and 95% during IV. In the EV, the AUC and accuracy were 0.96 and 90%, respectively. For the spinal canal area rate, correlation coefficients during five-fold cross-validation ranged from 0.57 to 0.64, with a mean correlation of 0.61 observed in the EV. DLAs developed with CNNs demonstrated promising accuracy for classifying CSM and CSR from plain radiographs. These algorithms have the potential to assist non-specialists in identifying patients who require further evaluation or referral to spine specialists, thereby reducing delays in the diagnosis and treatment of CSM.