Sort by:
Page 192 of 3993982 results

A Hierarchical Slice Attention Network for Appendicitis Classification in 3D CT Scans

Chia-Wen Huang, Haw Hwai, Chien-Chang Lee, Pei-Yuan Wu

arxiv logopreprintJun 29 2025
Timely and accurate diagnosis of appendicitis is critical in clinical settings to prevent serious complications. While CT imaging remains the standard diagnostic tool, the growing number of cases can overwhelm radiologists, potentially causing delays. In this paper, we propose a deep learning model that leverages 3D CT scans for appendicitis classification, incorporating Slice Attention mechanisms guided by external 2D datasets to enhance small lesion detection. Additionally, we introduce a hierarchical classification framework using pre-trained 2D models to differentiate between simple and complicated appendicitis. Our approach improves AUC by 3% for appendicitis and 5.9% for complicated appendicitis, offering a more efficient and reliable diagnostic solution compared to previous work.

Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction

Perla Mayo, Carolin M. Pirkl, Alin Achim, Bjoern Menze, Mohammad Golbabaee

arxiv logopreprintJun 29 2025
We introduce MRF-DiPh, a novel physics informed denoising diffusion approach for multiparametric tissue mapping from highly accelerated, transient-state quantitative MRI acquisitions like Magnetic Resonance Fingerprinting (MRF). Our method is derived from a proximal splitting formulation, incorporating a pretrained denoising diffusion model as an effective image prior to regularize the MRF inverse problem. Further, during reconstruction it simultaneously enforces two key physical constraints: (1) k-space measurement consistency and (2) adherence to the Bloch response model. Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines, providing more accurate parameter maps while better preserving measurement fidelity and physical model consistency-critical for solving reliably inverse problems in medical imaging.

Federated Breast Cancer Detection Enhanced by Synthetic Ultrasound Image Augmentation

Hongyi Pan, Ziliang Hong, Gorkem Durak, Ziyue Xu, Ulas Bagci

arxiv logopreprintJun 29 2025
Federated learning (FL) has emerged as a promising paradigm for collaboratively training deep learning models across institutions without exchanging sensitive medical data. However, its effectiveness is often hindered by limited data availability and non-independent, identically distributed data across participating clients, which can degrade model performance and generalization. To address these challenges, we propose a generative AI based data augmentation framework that integrates synthetic image sharing into the federated training process for breast cancer diagnosis via ultrasound images. Specifically, we train two simple class-specific Deep Convolutional Generative Adversarial Networks: one for benign and one for malignant lesions. We then simulate a realistic FL setting using three publicly available breast ultrasound image datasets: BUSI, BUS-BRA, and UDIAT. FedAvg and FedProx are adopted as baseline FL algorithms. Experimental results show that incorporating a suitable number of synthetic images improved the average AUC from 0.9206 to 0.9237 for FedAvg and from 0.9429 to 0.9538 for FedProx. We also note that excessive use of synthetic data reduced performance, underscoring the importance of maintaining a balanced ratio of real and synthetic samples. Our findings highlight the potential of generative AI based data augmentation to enhance FL results in the breast ultrasound image classification task.

Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification

Xing Shen, Justin Szeto, Mingyang Li, Hengguan Huang, Tal Arbel

arxiv logopreprintJun 29 2025
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image analysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs' predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off.

Hierarchical Corpus-View-Category Refinement for Carotid Plaque Risk Grading in Ultrasound

Zhiyuan Zhu, Jian Wang, Yong Jiang, Tong Han, Yuhao Huang, Ang Zhang, Kaiwen Yang, Mingyuan Luo, Zhe Liu, Yaofei Duan, Dong Ni, Tianhong Tang, Xin Yang

arxiv logopreprintJun 29 2025
Accurate carotid plaque grading (CPG) is vital to assess the risk of cardiovascular and cerebrovascular diseases. Due to the small size and high intra-class variability of plaque, CPG is commonly evaluated using a combination of transverse and longitudinal ultrasound views in clinical practice. However, most existing deep learning-based multi-view classification methods focus on feature fusion across different views, neglecting the importance of representation learning and the difference in class features. To address these issues, we propose a novel Corpus-View-Category Refinement Framework (CVC-RF) that processes information from Corpus-, View-, and Category-levels, enhancing model performance. Our contribution is four-fold. First, to the best of our knowledge, we are the foremost deep learning-based method for CPG according to the latest Carotid Plaque-RADS guidelines. Second, we propose a novel center-memory contrastive loss, which enhances the network's global modeling capability by comparing with representative cluster centers and diverse negative samples at the Corpus level. Third, we design a cascaded down-sampling attention module to fuse multi-scale information and achieve implicit feature interaction at the View level. Finally, a parameter-free mixture-of-experts weighting strategy is introduced to leverage class clustering knowledge to weight different experts, enabling feature decoupling at the Category level. Experimental results indicate that CVC-RF effectively models global features via multi-level refinement, achieving state-of-the-art performance in the challenging CPG task.

MedRegion-CT: Region-Focused Multimodal LLM for Comprehensive 3D CT Report Generation

Sunggu Kyung, Jinyoung Seo, Hyunseok Lim, Dongyeong Kim, Hyungbin Park, Jimin Sung, Jihyun Kim, Wooyoung Jo, Yoojin Nam, Namkug Kim

arxiv logopreprintJun 29 2025
The recent release of RadGenome-Chest CT has significantly advanced CT-based report generation. However, existing methods primarily focus on global features, making it challenging to capture region-specific details, which may cause certain abnormalities to go unnoticed. To address this, we propose MedRegion-CT, a region-focused Multi-Modal Large Language Model (MLLM) framework, featuring three key innovations. First, we introduce Region Representative ($R^2$) Token Pooling, which utilizes a 2D-wise pretrained vision model to efficiently extract 3D CT features. This approach generates global tokens representing overall slice features and region tokens highlighting target areas, enabling the MLLM to process comprehensive information effectively. Second, a universal segmentation model generates pseudo-masks, which are then processed by a mask encoder to extract region-centric features. This allows the MLLM to focus on clinically relevant regions, using six predefined region masks. Third, we leverage segmentation results to extract patient-specific attributions, including organ size, diameter, and locations. These are converted into text prompts, enriching the MLLM's understanding of patient-specific contexts. To ensure rigorous evaluation, we conducted benchmark experiments on report generation using the RadGenome-Chest CT. MedRegion-CT achieved state-of-the-art performance, outperforming existing methods in natural language generation quality and clinical relevance while maintaining interpretability. The code for our framework is publicly available.

Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation

Jian Shi, Tianqi You, Pingping Zhang, Hongli Zhang, Rui Xu, Haojie Li

arxiv logopreprintJun 29 2025
Automated and accurate segmentation of individual vertebra in 3D CT and MRI images is essential for various clinical applications. Due to the limitations of current imaging techniques and the complexity of spinal structures, existing methods still struggle with reducing the impact of image blurring and distinguishing similar vertebrae. To alleviate these issues, we introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve the accuracy of vertebrae segmentation. Specifically, we first apply wavelet transform for lossless downsampling to reduce the feature distortion in blurred images. The decomposed high and low-frequency components are then processed separately. For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features and filter out noises, restoring fine-grained details in blurred images. For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields, extracting spatially-varying contexts while capturing long-range dependencies with linear complexity. The utilization of multi-granularity contexts is essential for distinguishing similar vertebrae and improving segmentation accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches on both CT and MRI vertebrae segmentation datasets. The source code is publicly available at https://github.com/anaanaa/FMCNet.

Cognition-Eye-Brain Connection in Alzheimer's Disease Spectrum Revealed by Multimodal Imaging.

Shi Y, Shen T, Yan S, Liang J, Wei T, Huang Y, Gao R, Zheng N, Ci R, Zhang M, Tang X, Qin Y, Zhu W

pubmed logopapersJun 29 2025
The connection between cognition, eye, and brain remains inconclusive in Alzheimer's disease (AD) spectrum disorders. To explore the relationship between cognitive function, retinal biometrics, and brain alterations in the AD spectrum. Prospective. Healthy control (HC) (n = 16), subjective cognitive decline (SCD) (n = 35), mild cognitive impairment (MCI) (n = 18), and AD group (n = 7). 3-T, 3D T1-weighted Brain Volume (BRAVO) and resting-state functional MRI (fMRI). In all subgroups, cortical thickness was measured from BRAVO and segmented using the Desikan-Killiany-Tourville (DKT) atlas. The fractional amplitude of low-frequency fluctuations (FALFF) and regional homogeneity (ReHo) were measured in fMRI using voxel-based analysis. The eye was imaged by optical coherence tomography angiography (OCTA), with the deep learning model FARGO segmenting the foveal avascular zone (FAZ) and retinal vessels. FAZ area and perimeter, retinal blood vessels curvature (RBVC), thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell layer-inner plexiform layer (GCL-IPL) were calculated. Cognition-eye-brain associations were compared across the HC group and each AD spectrum stage using multivariable linear regression. Multivariable linear regression analysis. Statistical significance was set at p < 0.05 with FWE correction for fMRI and p < 1/62 (Bonferroni-corrected) for structural analyses. Reductions of FALFF in temporal regions, especially the left superior temporal gyrus (STG) in MCI patients, were linked to decreased RNFL thickness and increased FAZ area significantly. In AD patients, reduced ReHo values in occipital regions, especially the right middle occipital gyrus (MOG), were significantly associated with an enlarged FAZ area. The SCD group showed widespread cortical thickening significantly associated with all aforementioned retinal biometrics, with notable thickening in the right fusiform gyrus (FG) and right parahippocampal gyrus (PHG) correlating with reduced GCL-IPL thickness. Brain function and structure may be associated with cognition and retinal biometrics across the AD spectrum. Specifically, cognition-eye-brain connections may be present in SCD. 2. 3.

Perivascular Space Burden in Children With Autism Spectrum Disorder Correlates With Neurodevelopmental Severity.

Frigerio G, Rizzato G, Peruzzo D, Ciceri T, Mani E, Lanteri F, Mariani V, Molteni M, Agarwal N

pubmed logopapersJun 29 2025
Cerebral perivascular spaces (PVS) are involved in cerebrospinal fluid (CSF) circulation and clearance of metabolic waste in adult humans. A high number of PVS has been reported in autism spectrum disorder (ASD) but its relationship with CSF and disease severity is unclear. To quantify PVS in children with ASD through MRI. Retrospective. Sixty six children with ASD (mean age: 4.7 ± 1.5 years; males/females: 59/7). 3T, 3D T1-weighted GRE and 3D T2-weighted turbo spin echo sequences. PVS were segmented using a weakly supervised PVS algorithm. PVS count, white matter-perivascular spaces (WM-PVS<sub>tot</sub>) and normalized volume (WM-PVS<sub>voln</sub>) were analyzed in the entire white matter. Six regions: frontal, parietal, limbic, occipital, temporal, and deep WM (WM-PVS<sub>sr</sub>). WM, GM, CSF, and extra-axial CSF (eaCSF) volumes were also calculated. Autism Diagnostic Observation Schedule, Wechsler Intelligence Scale, and Griffiths Mental Developmental scales were used to assess clinical severity and developmental quotient (DQ). Kendall correlation analysis (continuous variables) and Friedman (categorical variables) tests were used to compare medians of PVS variables across different WM regions. Post hoc pairwise comparisons with Wilcoxon tests were used to evaluate distributions of PVS in WM regions. Generalized linear models were employed to assess DQ, clinical severity, age, and eaCSF volume in relation to PVS variables. A p-value < 0.05 indicated statistical significance. Severe DQ (β = 0.0089), mild form of autism (β = -0.0174), and larger eaCSF (β = 0.0082) volume was significantly associated with greater WM-PVS<sub>tot</sub> count. WM-PVS<sub>voln</sub> was predominantly affected by normalized eaCSF volume (eaCSF<sub>voln</sub>) (β = 0.0242; adjusted for WM volumes). The percentage of WM-PVS<sub>sr</sub> was higher in the frontal areas (32%) and was lowest in the temporal regions (11%). PVS count and volume in ASD are associated with eaCSF<sub>voln</sub>. PVS count is related to clinical severity and DQ. PVS count was higher in frontal regions and lower in temporal regions. 4. Stage 3.

CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation

Qilong Xing, Zikai Song, Yuteng Ye, Yuke Chen, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJun 28 2025
Segmentation of brain structures from MRI is crucial for evaluating brain morphology, yet existing CNN and transformer-based methods struggle to delineate complex structures accurately. While current diffusion models have shown promise in image segmentation, they are inadequate when applied directly to brain MRI due to neglecting anatomical information. To address this, we propose Collaborative Anatomy Diffusion (CA-Diff), a framework integrating spatial anatomical features to enhance segmentation accuracy of the diffusion model. Specifically, we introduce distance field as an auxiliary anatomical condition to provide global spatial context, alongside a collaborative diffusion process to model its joint distribution with anatomical structures, enabling effective utilization of anatomical features for segmentation. Furthermore, we introduce a consistency loss to refine relationships between the distance field and anatomical structures and design a time adapted channel attention module to enhance the U-Net feature fusion procedure. Extensive experiments show that CA-Diff outperforms state-of-the-art (SOTA) methods.
Page 192 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.