Sort by:
Page 190 of 2922917 results

Automatic 3-dimensional analysis of posterosuperior full-thickness rotator cuff tear size on magnetic resonance imaging.

Hess H, Gussarow P, Rojas JT, Zumstein MA, Gerber K

pubmed logopapersJun 1 2025
Tear size and shape are known to prognosticate the efficacy of surgical rotator cuff (RC) repair; however, current manual measurements on magnetic resonance images (MRIs) exhibit high interobserver variabilities and exclude 3-dimensional (3D) morphologic information. This study aimed to develop algorithms for automatic 3D analyses of posterosuperior full-thickness RC tear to enable efficient and precise tear evaluation and 3D tear visualization. A deep-learning network for automatic segmentation of the tear region in coronal and sagittal multicenter MRI was trained with manually segmented (consensus of 3 experts) proton density- and T2-weighted MRI of shoulders with full-thickness posterosuperior tears (n = 200). Algorithms for automatic measurement of tendon retraction, tear width, tear area, and automatic Patte classification considering the 3D morphology of the shoulder were implemented and evaluated against manual segmentation (n = 59). Automatic Patte classification was calculated using automatic segmented humerus and scapula on T1-weighted MRI of the same shoulders. Tears were automatically segmented, enabling 3D visualization of the tear, with a mean Dice coefficient of 0.58 ± 0.21 compared to an interobserver variability of 0.46 ± 0.21. The mean absolute error of automatic tendon retraction and tear width measurements (4.98 ± 4.49 mm and 3.88 ± 3.18 mm) were lower than the interobserver variabilities (5.42 ± 7.09 mm and 5.92 ± 1.02 mm). The correlations of all measurements performed on automatic tear segmentations compared with those on consensus segmentations were higher than the interobserver correlation. Automatic Patte classification achieved a Cohen kappa value of 0.62, compared with the interobserver variability of 0.56. Retraction calculated using standard linear measures underestimated the tear size relative to measurements considering the curved shape of the humeral head, especially for larger tears. Even on highly heterogeneous data, the proposed algorithms showed the feasibility to successfully automate tear size analysis and to enable automatic 3D visualization of the tear situation. The presented algorithms standardize cross-center tear analyses and enable the calculation of additional metrics, potentially improving the predictive power of image-based tear measurements for the outcome of surgical treatments, thus aiding in RC tear diagnosis, treatment decision, and planning.

MRI-based radiomic nomogram for predicting disease-free survival in patients with locally advanced rectal cancer.

Liu J, Liu K, Cao F, Hu P, Bi F, Liu S, Jian L, Zhou J, Nie S, Lu Q, Yu X, Wen L

pubmed logopapersJun 1 2025
Individual prognosis assessment is of paramount importance for treatment decision-making and active surveillance in cancer patients. We aimed to propose a radiomic model based on pre- and post-therapy MRI features for predicting disease-free survival (DFS) in locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy (nCRT) and subsequent surgical resection. This retrospective study included a total of 126 LARC patients, which were randomly assigned to a training set (n = 84) and a validation set (n = 42). All patients underwent pre- and post-nCRT MRI scans. Radiomic features were extracted from higher resolution T2-weighted images. Pearson correlation analysis and ANOVA or Relief were utilized for identifying radiomic features associated with DFS. Pre-treatment, post-treatment, and delta radscores were constructed by machine learning algorithms. An individualized nomogram was developed based on significant radscores and clinical variables using multivariate Cox regression analysis. Predictive performance was evaluated by the C-index, calibration curve, and decision curve analysis. The results demonstrated that in the validation set, the clinical model including pre-surgery carcinoembryonic antigen (CEA), chemotherapy after radiotherapy, and pathological stage yielded a C-index of 0.755 (95% confidence interval [CI]: 0.739-0.771). While the optimal pre-, post-, and delta-radscores achieved C-indices of 0.724 (95%CI: 0.701-0.747), 0.701 (95%CI: 0.671-0.731), and 0.625 (95%CI: 0.589-0.661), respectively. The nomogram integrating pre-surgery CEA, pathological stage, alongside pre- and post-nCRT radscore, obtained the highest C-index of 0.833 (95%CI: 0.815-0.851). The calibration curve and decision curves exhibited good calibration and clinical usefulness of the nomogram. Furthermore, the nomogram categorized patients into high- and low-risk groups exhibiting distinct DFS (both P < 0.0001). The nomogram incorporating pre- and post-therapy radscores and clinical factors could predict DFS in patients with LARC, which helps clinicians in optimizing decision-making and surveillance in real-world settings.

Multi-modal large language models in radiology: principles, applications, and potential.

Shen Y, Xu Y, Ma J, Rui W, Zhao C, Heacock L, Huang C

pubmed logopapersJun 1 2025
Large language models (LLMs) and multi-modal large language models (MLLMs) represent the cutting-edge in artificial intelligence. This review provides a comprehensive overview of their capabilities and potential impact on radiology. Unlike most existing literature reviews focusing solely on LLMs, this work examines both LLMs and MLLMs, highlighting their potential to support radiology workflows such as report generation, image interpretation, EHR summarization, differential diagnosis generation, and patient education. By streamlining these tasks, LLMs and MLLMs could reduce radiologist workload, improve diagnostic accuracy, support interdisciplinary collaboration, and ultimately enhance patient care. We also discuss key limitations, such as the limited capacity of current MLLMs to interpret 3D medical images and to integrate information from both image and text data, as well as the lack of effective evaluation methods. Ongoing efforts to address these challenges are introduced.

Structural alterations as a predictor of depression - a 7-Tesla MRI-based multidimensional approach.

Schnellbächer GJ, Rajkumar R, Veselinović T, Ramkiran S, Hagen J, Collee M, Shah NJ, Neuner I

pubmed logopapersJun 1 2025
Major depressive disorder (MDD) is a debilitating condition that is associated with changes in the default-mode network (DMN). Commonly reported features include alterations in gray matter volume (GMV), cortical thickness (CoT), and gyrification. A comprehensive examination of these variables using ultra-high field strength MRI and machine learning methods may lead to novel insights into the pathophysiology of depression and help develop a more personalized therapy. Cerebral images were obtained from 41 patients with confirmed MDD and 41 healthy controls, matched for age and gender, using a 7-T-MRI. DMN parcellation followed the Schaefer 600 Atlas. Based on the results of a mixed-model repeated measures analysis, a support vector machine (SVM) calculation followed by leave-one-out cross-validation determined the predictive ability of structural features for the presence of MDD. A consecutive permutation procedure identified which areas contributed to the classification results. Correlating changes in those areas with BDI-II and AMDP scores added an explanatory aspect to this study. CoT did not delineate relevant changes in the mixed model and was excluded from further analysis. The SVM achieved a good prediction accuracy of 0.76 using gyrification data. GMV was not a viable predictor for disease presence, however, it correlated in the left parahippocampal gyrus with disease severity as measured by the BDI-II. Structural data of the DMN may therefore contain the necessary information to predict the presence of MDD. However, there may be inherent challenges with predicting disease course or treatment response due to high GMV variance and the static character of gyrification. Further improvements in data acquisition and analysis may help to overcome these difficulties.

Regions of interest in opportunistic computed tomography-based screening for osteoporosis: impact on short-term in vivo precision.

Park J, Kim Y, Hong S, Chee CG, Lee E, Lee JW

pubmed logopapersJun 1 2025
To determine an optimal region of interest (ROI) for opportunistic screening of osteoporosis in terms of short-term in vivo diagnostic precision. We included patients who underwent two CT scans and one dual-energy X-ray absorptiometry scan within a month in 2022. Deep-learning software automatically measured the attenuation in L1 using 54 ROIs (three slice thicknesses × six shapes × three intravertebral levels). To identify factors associated with a lower attenuation difference between the two CT scans, mixed-effect model analysis was performed with ROI-level (slice thickness, shape, intravertebral levels) and patient-level (age, sex, patient diameter, change in CT machine) factors. The root-mean-square standard deviation (RMSSD) and area under the receiver-operating-characteristic curve (AUROC) were calculated. In total, 73 consecutive patients (mean age ± standard deviation, 69 ± 9 years, 38 women) were included. A lower attenuation difference was observed in ROIs in images with slice thicknesses of 1 and 3 mm than that in images with a slice thickness of 5 mm (p < .001), in large elliptical ROIs (p = .007 or < .001, respectively), and in mid- or cranial-level ROIs than that in caudal-level ROIs (p < .001). No patient-level factors were significantly associated with the attenuation difference. Large, elliptical ROIs placed at the mid-level of L1 on images with 1- or 3-mm slice thicknesses yielded RMSSDs of 12.4-12.5 HU and AUROCs of 0.90. The largest possible regions of interest drawn in the mid-level trabecular portion of the L1 vertebra on thin-slice images may yield improvements in the precision of opportunistic screening for osteoporosis via CT.

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T

pubmed logopapersJun 1 2025
The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.

Prediction of therapeutic response to transarterial chemoembolization plus systemic therapy regimen in hepatocellular carcinoma using pretreatment contrast-enhanced MRI based habitat analysis and Crossformer model.

Zhu Y, Liu T, Chen J, Wen L, Zhang J, Zheng D

pubmed logopapersJun 1 2025
To develop habitat and deep learning (DL) models from multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) habitat images categorized using the K-means clustering algorithm. Additionally, we aim to assess the predictive value of identified regions for early evaluation of the responsiveness of hepatocellular carcinoma (HCC) patients to treatment with transarterial chemoembolization (TACE) plus molecular targeted therapies (MTT) and anti-PD-(L)1. A total of 102 patients with HCC from two institutions (A, n = 63 and B, n = 39) who received TACE plus systemic therapy were enrolled from September 2020 to January 2024. Multiple CE-MRI sequences were used to outline 3D volumes of interest (VOI) of the lesion. Subsequently, K-means clustering was applied to categorize intratumoral voxels into three distinct subgroups, based on signal intensity values of images. Using data from institution A, the habitat model was built with the ExtraTrees classifier after extracting radiomics features from intratumoral habitats. Similarly, the Crossformer model and ResNet50 model were trained on multi-channel data in institution A, and a DL model with Transformer-based aggregation was constructed to predict the response. Finally, all models underwent validation at institution B. The Crossformer model and the habitat model both showed high area under the receiver operating characteristic curves (AUCs) of 0.869 and 0.877 (training cohort). In validation, AUC was 0.762 for the Crossformer model and 0.721 for the habitat model. The habitat model and DL model based on CE-MRI possesses the capability to non-invasively predict the efficacy of TACE plus systemic therapy in HCC patients, which is critical for precision treatment and patient outcomes.

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Carretero-Gómez L, Fung M, Wiesinger F, Carl M, McKinnon G, de Arcos J, Mandava S, Arauz S, Sánchez-Lacalle E, Nagrani S, López-Alcorocho JM, Rodríguez-Íñigo E, Malpica N, Padrón M

pubmed logopapersJun 1 2025
To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in shoulder instability. Forty-four patients (9 females; 33.5 ± 15.65 years) with symptomatic anterior glenohumeral instability and no previous shoulder surgery underwent ZTE MRI and CT on the same day. ZTE images were reconstructed with conventional and DL methods and post-processed for CT-like contrast. Two musculoskeletal radiologists, blinded to the reconstruction method, independently evaluated 20 randomized MR ZTE datasets with and without DL-enhancement for perceived signal-to-noise ratio, resolution, and lesion conspicuity at humerus and glenoid using a 4-point Likert scale. Inter-reader reliability was assessed using weighted Cohen's kappa (K). An ordinal logistic regression model analyzed Likert scores, with the reconstruction method (DL-enhanced vs. conventional) as the predictor. Glenoid track (GT) and Hill-Sachs interval (HSI) measurements were performed by another radiologist on both DL ZTE and CT datasets. Intermodal agreement was assessed through intraclass correlation coefficients (ICCs) and Bland-Altman analysis. DL ZTE MR bone images scored higher than conventional ZTE across all items, with significantly improved perceived resolution (odds ratio (OR) = 7.67, p = 0.01) and glenoid lesion conspicuity (OR = 25.12, p = 0.01), with substantial inter-rater agreement (K = 0.61 (0.38-0.83) to 0.77 (0.58-0.95)). Inter-modality assessment showed almost perfect agreement between DL ZTE MR and CT for all bone measurements (overall ICC = 0.99 (0.97-0.99)), with mean differences of 0.08 (- 0.80 to 0.96) mm for GT and - 0.07 (- 1.24 to 1.10) mm for HSI. DL-based reconstruction enhances ZTE MRI quality for glenohumeral assessment, offering osseous evaluation and quantification equivalent to gold-standard CT, potentially simplifying preoperative workflow, and reducing CT radiation exposure.

Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning.

Fares J, Wan Y, Mayrand R, Li Y, Mair R, Price SJ

pubmed logopapersJun 1 2025
Recent advancements in neuroimaging and machine learning have significantly improved our ability to diagnose and categorize isocitrate dehydrogenase (IDH)-wildtype glioblastoma, a disease characterized by notable tumoral heterogeneity, which is crucial for effective treatment. Neuroimaging techniques, such as diffusion tensor imaging and magnetic resonance radiomics, provide noninvasive insights into tumor infiltration patterns and metabolic profiles, aiding in accurate diagnosis and prognostication. Machine learning algorithms further enhance glioblastoma characterization by identifying distinct imaging patterns and features, facilitating precise diagnoses and treatment planning. Integration of these technologies allows for the development of image-based biomarkers, potentially reducing the need for invasive biopsy procedures and enabling personalized therapy targeting specific pro-tumoral signaling pathways and resistance mechanisms. Although significant progress has been made, ongoing innovation is essential to address remaining challenges and further improve these methodologies. Future directions should focus on refining machine learning models, integrating emerging imaging techniques, and elucidating the complex interplay between imaging features and underlying molecular processes. This review highlights the pivotal role of neuroimaging and machine learning in glioblastoma research, offering invaluable noninvasive tools for diagnosis, prognosis prediction, and treatment planning, ultimately improving patient outcomes. These advances in the field promise to usher in a new era in the understanding and classification of IDH-wildtype glioblastoma.
Page 190 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.